美文网首页Ceph
Ceph架构剖析

Ceph架构剖析

作者: 守望者_1065 | 来源:发表于2017-10-23 17:26 被阅读733次

    朱 荣泽| 2013.09.09

    https://www.ustack.com/blog/ceph_infra/

    云硬盘是IaaS云平台的重要组成部分,云硬盘给虚拟机提供了持久的块存储设备。目前的AWS 的EBS(Elastic Block store)给Amazon的EC2实例提供了高可用高可靠的块级存储卷,EBS适合于一些需要访问块设备的应用,比如数据库、文件系统等。 在OpenStack中,可以使用Ceph、Sheepdog、GlusterFS作为云硬盘的开源解决方案,下面我们来了解Ceph的架构。

    Ceph是统一存储系统,支持三种接口。

    Object:有原生的API,而且也兼容Swift和S3的API

    Block:支持精简配置、快照、克隆

    File:Posix接口,支持快照

    Ceph也是分布式存储系统,它的特点是:

    高扩展性:使用普通x86服务器,支持10~1000台服务器,支持TB到PB级的扩展。

    高可靠性:没有单点故障,多数据副本,自动管理,自动修复。

    高性能:数据分布均衡,并行化度高。对于objects storage和block storage,不需要元数据服务器。

    目前Inktank公司掌控Ceph的开发,但Ceph是开源的,遵循LGPL协议。Inktank还积极整合Ceph和其他云计算和大数据平台,目前Ceph支持OpenStack、CloudStack、OpenNebula、Hadoop等。

    当前Ceph的最新稳定版本0.67(Dumpling),它的objects storage和block storage已经足够稳定,而且Ceph社区还在继续开发新功能,包括跨机房部署和容灾、支持Erasure encoding等。Ceph具有完善的社区设施和发布流程[1](每三个月发布一个稳定版本) 。

    目前Ceph有很多用户案列,这是2013.03月Inktank公司在邮件列表中做的调查,共收到了81份有效反馈[2]。从调查中可以看到有26%的用户在生产环境中使用Ceph,有37%的用户在私有云中使用Ceph,还有有16%的用户在公有云中使用Ceph。

    目前Ceph最大的用户案例是Dreamhost的Object Service,目前总容量是3PB,可靠性达到99.99999%,数据存放采用三副本,它的价格比S3还便宜。下图中,左边是Inktank的合作伙伴,右边是Inktank的用户。

    Ceph的底层是RADOS,它的意思是“A reliable, autonomous, distributed object storage”。 RADOS由两个组件组成:

    OSD: Object Storage Device,提供存储资源。

    Monitor:维护整个Ceph集群的全局状态。

    RADOS具有很强的扩展性和可编程性,Ceph基于RADOS开发了

    Object Storage、Block Storage、FileSystem。Ceph另外两个组件是:

    MDS:用于保存CephFS的元数据。

    RADOS Gateway:对外提供REST接口,兼容S3和Swift的API。

    Ceph的命名空间是 (Pool, Object),每个Object都会映射到一组OSD中(由这组OSD保存这个Object):

    (Pool, Object) → (Pool, PG) → OSD set → Disk

    Ceph中Pools的属性有:

    Object的副本数

    Placement Groups的数量

    所使用的CRUSH Ruleset

    在Ceph中,Object先映射到PG(Placement Group),再由PG映射到OSD set。每个Pool有多个PG,每个Object通过计算hash值并取模得到它所对应的PG。PG再映射到一组OSD(OSD的个数由Pool 的副本数决定),第一个OSD是Primary,剩下的都是Replicas。

    数据映射(Data Placement)的方式决定了存储系统的性能和扩展性。(Pool, PG) → OSD set 的映射由四个因素决定:

    CRUSH算法:一种伪随机算法。

    OSD MAP:包含当前所有Pool的状态和所有OSD的状态。

    CRUSH MAP:包含当前磁盘、服务器、机架的层级结构。

    CRUSH Rules:数据映射的策略。这些策略可以灵活的设置object存放的区域。比如可以指定 pool1中所有objecst放置在机架1上,所有objects的第1个副本放置在机架1上的服务器A上,第2个副本分布在机架1上的服务器B上。 pool2中所有的object分布在机架2、3、4上,所有Object的第1个副本分布在机架2的服务器上,第2个副本分布在机架3的服 器上,第3个副本分布在机架4的服务器上。

    Client从Monitors中得到CRUSH MAP、OSD MAP、CRUSH Ruleset,然后使用CRUSH算法计算出Object所在的OSD set。所以Ceph不需要Name服务器,Client直接和OSD进行通信。伪代码如下所示:

    locator = object_name

    obj_hash = hash(locator)

    pg = obj_hash % num_pg

    osds_for_pg = crush(pg)  # returns a list of osds

    primary = osds_for_pg[0]

    replicas = osds_for_pg[1:]

    这种数据映射的优点是:

    把Object分成组,这降低了需要追踪和处理metadata的数量(在全局的层面上,我们不需要追踪和处理每个object的metadata和placement,只需要管理PG的metadata就可以了。PG的数量级远远低于object的数量级)。

    增加PG的数量可以均衡每个OSD的负载,提高并行度。

    分隔故障域,提高数据的可靠性。

    Ceph的读写操作采用Primary-Replica模型,Client只向Object所对应OSD set的Primary发起读写请求,这保证了数据的强一致性。

    由于每个Object都只有一个Primary OSD,因此对Object的更新都是顺序的,不存在同步问题。

    当Primary收到Object的写请求时,它负责把数据发送给其他Replicas,只要这个数据被保存在所有的OSD上时,Primary才应答Object的写请求,这保证了副本的一致性。

    在分布式系统中,常见的故障有网络中断、掉电、服务器宕机、硬盘故障等,Ceph能够容忍这些故障,并进行自动修复,保证数据的可靠性和系统可用性。

    Monitors是Ceph管家,维护着Ceph的全局状态。Monitors的功能和zookeeper类似,它们使用Quorum和Paxos算法去建立全局状态的共识。

    OSDs可以进行自动修复,而且是并行修复。

    故障检测:

    OSD之间有心跳检测,当OSD A检测到OSD B没有回应时,会报告给Monitors说OSD B无法连接,则Monitors给OSD B标记为down状态,并更新OSD Map。当过了M秒之后还是无法连接到OSD B,则Monitors给OSD B标记为out状态(表明OSD B不能工作),并更新OSD Map。

    备注:可以在Ceph中配置M的值。

    故障恢复:

    当某个PG对应的OSD set中有一个OSD被标记为down时(假如是Primary被标记为down,则某个Replica会成为新的Primary,并处理所有读写 object请求),则该PG处于active+degraded状态,也就是当前PG有效的副本数是N-1。

    过了M秒之后,假如还是无法连接该OSD,则它被标记为out,Ceph会重新计算PG到OSD set的映射(当有新的OSD加入到集群时,也会重新计算所有PG到OSD set的映射),以此保证PG的有效副本数是N。

    新OSD set的Primary先从旧的OSD set中收集PG log,得到一份Authoritative History(完整的、全序的操作序列),并让其他Replicas同意这份Authoritative History(也就是其他Replicas对PG的所有objects的状态达成一致),这个过程叫做Peering。

    当Peering过程完成之后,PG进 入active+recoverying状态,Primary会迁移和同步那些降级的objects到所有的replicas上,保证这些objects 的副本数为N。

    Client和Server直接通信,不需要代理和转发

    多个OSD带来的高并发度。objects是分布在所有OSD上。

    负载均衡。每个OSD都有权重值(现在以容量为权重)。

    client不需要负责副本的复制(由primary负责),这降低了client的网络消耗。

    数据多副本。可配置的per-pool副本策略和故障域布局,支持强一致性。

    没有单点故障。可以忍受许多种故障场景;防止脑裂;单个组件可以滚动升级并在线替换。

    所有故障的检测和自动恢复。恢复不需要人工介入,在恢复期间,可以保持正常的数据访问。

    并行恢复。并行的恢复机制极大的降低了数据恢复时间,提高数据的可靠性。

    高度并行。没有单个中心控制组件。所有负载都能动态的划分到各个服务器上。把更多的功能放到OSD上,让OSD更智能。

    自管理。容易扩展、升级、替换。当组件发生故障时,自动进行数据的重新复制。当组件发生变化时(添加/删除),自动进行数据的重分布。

    使用fio测试RBD的IOPS,使用dd测试RBD的吞吐率,下面是测试的参数:

    fio的参数:bs=4K, ioengine=libaio, iodepth=32, numjobs=16, direct=1

    dd的参数:bs=512M,oflag=direct

    我们的测试服务器是AWS上最强的实例:

    117GB内存

    双路 E5-2650,共16核

    24 * 2TB 硬盘

    服务器上的操作系统是Ubuntu 13.04,安装Ceph Cuttlefish 0.61版,副本数设置为2,RBD中的块大小设置为1M。为了对比,同时还对软件RAID10进行了测试。下面表格中的性能比是Ceph与RAID10性能之间的比较。

    因为使用的是AWS上的虚拟机,所以它(Xen)挂载的磁盘都是设置了Cache的。因此下面测试的数据并不能真实反应物理磁盘的真实性能,仅供与RAID10进行对比。

    磁盘数随机写随机读

    CephRAID10性能比CephRAID10性能比

    241075377228%60454679129%

    12665163340%2939434067%

    641383249%909144562%

    432855958%66681581%

    212027343%31950363%

    磁盘数顺序写(MB/s)顺序读(MB/s)

    CephRAID10性能比CephRAID10性能比

    2429987933%617184333%

    1221270330%445112639%

    68130826%23370932%

    46728423%17046936%

    23415322%9024037%

    从测试结果中,我们看到在单机情况下,RBD的性能不如RAID10,这是为什么?我们可以通过三种方法找到原因:

    阅读Ceph源码,查看I/O路径

    使用blktrace查看I/O操作的执行

    使用iostat观察硬盘的读写情况

    RBD的I/O路径很长,要经过网络、文件系统、磁盘:

    Librbd -> networking -> OSD -> FileSystem -> Disk

    Client的每个写操作在OSD中要经过8种线程,写操作下发到OSD之后,会产生2~3个磁盘seek操作:

    把写操作记录到OSD的Journal文件上(Journal是为了保证写操作的原子性)。

    把写操作更新到Object对应的文件上。

    把写操作记录到PG Log文件上。

    我使用fio向RBD不断写入数据,然后使用iostat观察磁盘的读写情况。在1分钟之内,fio向RBD写入了3667 MB的数据,24块硬盘则被写入了16084 MB的数据,被读取了288 MB的数据。

    向RBD写入1MB数据 = 向硬盘写入4.39MB数据 + 读取0.08MB数据

    在单机情况下,RBD的性能不如传统的RAID10,这是因为RBD的I/O路径很复杂,导致效率很低。但是Ceph的优势在于它的扩展性,它的性能会随着磁盘数量线性增长,因此在多机的情况下,RBD的IOPS和吞吐率会高于单机的RAID10(不过性能会受限于网络的带宽)。

    如前所述,Ceph优势显著,使用它能够降低硬件成本和运维成本,但它的复杂性会带来一定的学习成本。

    Ceph的特点使得它非常适合于云计算,那么OpenStack使用Ceph的效果如何?下期《Ceph与OpenStack》将会介绍Ceph的自动化部署、Ceph与OpenStack的对接。

    [1]http://www.ustack.com/blog/ceph-distributed-block-storage/#2_Ceph

    [2]http://ceph.com/community/results-from-the-ceph-census/

    订阅本站打印文章上一篇《OpenStack社区周报(8.26 – 9.3)》下一篇《OpenStack社区周报(8.4 – 9.11)》

    互动评论: 《Ceph架构剖析》上有0条评论

    学习了,正在用于生产环境,使用的是RBD,性能不是很理想。

    回复

    Rongze Zhu2013年9月9日6:31 下午

    规模有多大呀?

    回复

    6 osd ,每osd 2T sata *3 raid 0 , 60G ssd 10G Journal

    回复

    Rongze Zhu2013年9月9日9:16 下午

    这种部署方式好奇怪呀..

    回复

    Rongze Zhu2013年9月10日2:18 下午

    为何不直接18个OSD呢?估计性能会更好一些。

    假如18个OSD,则单块SSD作为journal就是瓶颈了,推荐把journal放在OSD上。然后你再测试看看。

    好,我试试,谢谢。

    之前是4台服务器12个osd,ceph 0.56 但是出现了很严重的bug,ceph-osd进程经常内存溢出,后面就升级到了0.61。

    sixiangma2013年9月10日10:04 下午

    请问fio每次读写的块大小是多少? 上面得到的IOPS和THROUGHPUT是整个集群的最大值吗?

    回复

    Rongze Zhu2013年9月14日12:32 上午

    FIO的参数已在文中提及:bs=4K, ioengine=libaio, iodepth=32, numjobs=16, direct=1 。

    上面的IOPS和throughput不是整个集群的峰值,只是为了和RAID10做比较。

    而且上面的IOPS没有反应出真正物理磁盘的性能,因为我们使用的是AWS的虚拟机测试的。

    回复

    Lawrency.Meng2013年9月11日5:59 下午

    使用glusterfs和cephfs挂载到/var/lib/nova/instances目录,用来保存虚拟机镜像,哪个更有优势呢?还有虚拟机镜像文件的访问,读写对文件系统又有什么特别的要求呢?

    回复

    higkoohk2013年10月9日3:46 下午

    正在考虑开源虚拟机后台存储的方案。

    尝试了GlusterFS和Ceph,决定放弃GlusterFS,原因如下:http://www.gluster.org/pipermail/gluster-users/2013-October/037597.html

    Ceph感觉还挺强劲的,不知道国内为什么都说它不稳定。目前只发现了这个问题:

    手动执行`umount -l`时,会导致数据丢失:http://comments.gmane.org/gmane.comp.file-systems.ceph.user/4640

    回复

    zqfan2013年10月12日12:01 上午

    不明觉厉,我对存储不大了解,不过根据CAP理论,为了获取强一致性,可用性必然会降低(总不至于牺牲容错吧),所以它的性能恐怕有点折扣。另外分布式系统和单机系统比吞吐率是不是有点欺负人了,拼时延才是真见血吧。乱说一顿,贻笑大方,万勿见怪

    回复

    kill512162013年11月15日4:55 下午

    您好 ,请问您是直接在osd上,挂载rbd 进行的测试,还是又开了台虚拟机,专门作为测试机挂载的rbd进行的测试 ?

    回复

    评论:*

    姓名:*

    电子邮箱:*您的电子邮件地址不会被公开

    收藏于 2016-07-29

    https://www.ustack.com/blog/ceph_infra/

    相关文章

      网友评论

        本文标题:Ceph架构剖析

        本文链接:https://www.haomeiwen.com/subject/enbauxtx.html