美文网首页
二种方法实现Spark计算WordCount

二种方法实现Spark计算WordCount

作者: 数据萌新 | 来源:发表于2018-11-05 17:19 被阅读0次

1.spark-shell

val lines = sc.textFile("hdfs://spark1:9000/spark.txt")
val words = lines.flatMap(line => line.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.foreach(wordcount => println(wordcount._1 + " appeared " + wordcount._2 + " times"))

2.Scala for idea

    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.11</artifactId>
      <version>2.2.0</version>
    </dependency>
package cn.spark.study.core
 
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
 
object WordCount {
   
  def main(args: Array[String]) { 
    val conf = new SparkConf()
        .setAppName("WordCount")
.setMaster("spark://hadoop:7077");
//.setMaster("local[2]");//本地运行(windows)
    val sc = new SparkContext(conf)
    
    val lines = sc.textFile(args(0), 1);
    val words = lines.flatMap { line => line.split(" ")}
    val pairs = words.map {word => (word, 1)}
    val wordCount = pairs.reduceByKey(_ + _)
    wordCount.foreach(wordCount => println(wordCount._1 + " appeared " + wordCount._2 + " times"))
  }
}

最后,需要使用spark submit提交到spark集群中进行运行,执行脚本如下:

/usr/local/spark/bin/spark-submit \
--class cn.spark.study.core.WordCount \
/usr/local/spark-study/scala/wordcount.jar \
/root/test.txt
~                                                        

注意:需要停止spark-shell,否则可能出现内存不足错误(Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources)

相关文章

网友评论

      本文标题:二种方法实现Spark计算WordCount

      本文链接:https://www.haomeiwen.com/subject/enosxqtx.html