美文网首页
Deep Residual Learning for Image

Deep Residual Learning for Image

作者: 馒头and花卷 | 来源:发表于2020-01-11 23:36 被阅读0次

    He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vision and pattern recognition, 2016: 770-778.

    @article{he2016deep,
    title={Deep Residual Learning for Image Recognition},
    author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
    pages={770--778},
    year={2016}}

    主要内容

    深度一直是CNN很重要的一个点, 作者发现, 当仅仅增加层数不一定会带来优势, 甚至会误差会加大, 而且这个误差并非是过拟合导致的.

    设输入为x, 一般的网络的输出可以表示为\mathcal{H}(x), 作者考虑的是
    \tag{1} \mathcal{F}(x):=\mathcal{H}(x)-x.

    实际上看到这里是有困惑的, 为什么\mathcal{H}(x)-x是成立的? 这不就意味着网络的输出和输入是同样大小的? 那还怎么分类.

    在这里插入图片描述

    从上面的图中可以看到, 其实\mathcal{H}(x)并非是整个网络的输出, 而是某些层的输出,图中每俩个层就会进行一次残差的操作. 所以用网络去学习\mathcal{F}(x), 能够把前者的信息更好的传递下去. 就像作者说的, 如果前面部分的层能够很好的完成任务, 后面的层只需要称为恒等映射就行了. 但是恒等映射不一定能够被很好的逼近, 这将导致网络加深反而误差变大, 但是如果改成学习残差就很容易了, 因为后面的层只需要将权重设置为0,那么后面每一块的输出都会是x(为某一层的输出), 这至少能够保证深度加深结果不会变坏.

    在这里插入图片描述

    当然还有最后一个问题, x的大小终究是要变化的, 所以我们没法保证\mathcal{F}(x)x的尺寸是一致的, 一种解决办法是增加一个线性映射
    \tag{2} \mathcal{F}(x)+W_s x,
    代码里用的便是1x1的卷积核, 或者也可以通过补零来实现.

    代码

    在这里插入图片描述
    """
    Resnet34训练于CIFAR10
    epoches=1000
    lr=0.01 论文中0.1开始  试了以下梯度炸了 可能是网络结构的原因
    momentum=0.9
    weight_decay=0.0001
    """
    
    import torch
    import torch.nn as nn
    import torchvision
    import torchvision.transforms as transforms
    import numpy as np
    import os
    
    
    
    class Residualblock(nn.Module):
    
        def __init__(self, in_channels, out_channels,
                     stride=1, shortcut=None):
            super(Residualblock, self).__init__()
    
            self.longway = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 3, stride, 1),
                nn.BatchNorm2d(out_channels),
                nn.ReLU(inplace=True),
                nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                nn.BatchNorm2d(out_channels),
                nn.ReLU(inplace=True)
            )
    
            self.shortway = shortcut
    
        def forward(self, x):
    
            residual = self.longway(x)
            identity = x if self.shortway is None else self.shortway(x)
            return nn.functional.relu(identity + residual)
    
    
    class ResNet(nn.Module):
    
        def __init__(self, out_size=10, layers=None):
            """
            :param out_size: 输出的类的数量
            :param layers:  每组有多少块 说不清 回看论文
            """
            super(ResNet, self).__init__()
    
            if layers is None:
                layers = (2, 3, 5, 2)
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, 7, 2, 3),
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(3, 2, 1)
            )
            self.layer1 = self._make_layer(64, 64, layers[0])
            self.layer2 = self._make_layer(64, 128, layers[1], 2)
            self.layer3 = self._make_layer(128, 256, layers[2], 2)
            self.layer4 = self._make_layer(256, 512, layers[3], 2)
    
            #ada_avg: 将输入(N, C, H, W) -> (N, C, H*, W*)
            #下面H*, W* = 1, 1
            self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
            self.fc = nn.Linear(512, out_size)
    
            #直接从pytorch源码中搬来的初始化
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
    
    
        def _make_layer(self, in_channels, out_channels,
                        block_nums, stride=1):
    
            shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 1, stride)
            )
            layer = [nn.Sequential(
                Residualblock(in_channels, out_channels, stride, shortcut)
            )]
            for block in range(block_nums):
                layer.append(
                    Residualblock(out_channels, out_channels, 1)
                )
            return nn.Sequential(*layer)
    
        def forward(self, x):
    
            x = self.conv1(x)
    
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
            x = self.avg_pool(x)
    
            x = torch.flatten(x, 1) #展平 等价于.vier(x.size(0), -1)
            out = self.fc(x)
            return out
    
    
    class Train:
    
        def __init__(self, lr=0.01, momentum=0.9, weight_decay=0.0001):
            self.net = ResNet()
            self.criterion = nn.CrossEntropyLoss()
            self.opti = torch.optim.SGD(self.net.parameters(),
                                        lr=lr, momentum=momentum,
                                        weight_decay=weight_decay)
            self.gpu()
            self.generate_path()
            self.acc_rates = []
            self.errors = []
    
    
        def gpu(self):
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            if torch.cuda.device_count() > 1:
                print("Let'us use %d GPUs" % torch.cuda.device_count())
                self.net = nn.DataParallel(self.net)
            self.net = self.net.to(self.device)
    
    
    
        def generate_path(self):
            """
            生成保存数据的路径
            :return:
            """
            try:
                os.makedirs('./paras')
                os.makedirs('./logs')
                os.makedirs('./infos')
            except FileExistsError as e:
                pass
            name = self.net.__class__.__name__
            paras = os.listdir('./paras')
            logs = os.listdir('./logs')
            infos = os.listdir('./infos')
            number = max((len(paras), len(logs), len(infos)))
            self.para_path = "./paras/{0}{1}.pt".format(
                name,
                number
            )
            
            self.log_path = "./logs/{0}{1}.txt".format(
                name,
                number
            )
            self.info_path = "./infos/{0}{1}.npy".format(
                name,
                number
            )
    
    
        def log(self, strings):
            """
            运行日志
            :param strings:
            :return:
            """
            # a 往后添加内容
            with open(self.log_path, 'a', encoding='utf8') as f:
                f.write(strings)
    
        def save(self):
            """
            保存网络参数
            :return:
            """
            torch.save(self.net.state_dict(), self.para_path)
    
        def derease_lr(self, multi=10):
            """
            降低学习率
            :param multi:
            :return:
            """
            self.opti.param_groups()[0]['lr'] /= multi
    
    
        def train(self, trainloder, epochs=50):
            data_size = len(trainloder) * trainloder.batch_size
            part = int(trainloder.batch_size / 2)
            for epoch in range(epochs):
                running_loss = 0.
                total_loss = 0.
                acc_count = 0.
                if (epoch + 1) % int(epochs / 2) is 0:
                    self.derease_lr()
                    self.log(#日志记录
                        "learning rate change!!!\n"
                    )
                for i, data in enumerate(trainloder):
                    imgs, labels = data
                    imgs = imgs.to(self.device)
                    labels = labels.to(self.device)
                    out = self.net(imgs)
                    loss = self.criterion(out, labels)
                    _, pre = torch.max(out, 1)  #判断是否判断正确
                    acc_count += (pre == labels).sum().item() #加总对的个数
    
                    self.opti.zero_grad()
                    loss.backward()
                    self.opti.step()
    
                    running_loss += loss.item()
    
                    if (i+1) % part is 0:
                        strings = "epoch {0:<3} part {1:<5} loss: {2:<.7f}\n".format(
                            epoch, i, running_loss / part
                        )
                        self.log(strings)#日志记录
                        total_loss += running_loss
                        running_loss = 0.
                self.acc_rates.append(acc_count / data_size)
                self.errors.append(total_loss / data_size)
                self.log( #日志记录
                    "Accuracy of the network on %d train images: %d %%\n" %(
                        data_size, acc_count / data_size * 100
                    )
                )
                self.save() #保存网络参数
            #保存一些信息画图用
            np.save(self.info_path, {
                'acc_rates': np.array(self.acc_rates),
                'errors': np.array(self.errors)
            })
    
    
    
    
    if __name__ == "__main__":
    
        root = "../../data"
    
        trainset = torchvision.datasets.CIFAR10(root=root, train=True,
                                              download=False,
                                              transform=transforms.Compose(
                                                  [transforms.ToTensor(),
                                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
                                              ))
    
        train_loader = torch.utils.data.DataLoader(trainset, batch_size=128,
                                                  shuffle=True, num_workers=0)
    
        dog = Train()
        dog.train(train_loader, epochs=1000)
    
    
    

    相关文章

      网友评论

          本文标题:Deep Residual Learning for Image

          本文链接:https://www.haomeiwen.com/subject/entiactx.html