美文网首页
大数据面试题-1

大数据面试题-1

作者: edwin1993 | 来源:发表于2018-09-18 12:15 被阅读0次

    一、map-reduce 原理

    map过程:

    1.1 读取HDFS中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数。
    <0,hello you> <10,hello me>
    1.2 覆盖map(),接收1.1产生的<k,v>,进行处理,转换为新的<k,v>输出。          
    <hello,1> <you,1> <hello,1> <me,1>
    1.3 对1.2输出的<k,v>进行分区。默认分为一个区。
    1.4 对不同分区中的数据进行排序(按照k)、分组。分组指的是相同key的value放到一个集合中。 
    排序后:<hello,1> <hello,1> <me,1> <you,1> 分组后:<hello,{1,1}><me,{1}><you,{1}>
    1.5 (可选)对分组后的数据进行归约。

    Reduce任务处理

    2.1 多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。(shuffle。shuffle是根据map输出的key值排序的)
    2.2 对多个map的输出进行合并、排序。覆盖reduce函数,接收的是分组后的数据,实现自己的业务逻辑, 
    <hello,2> <me,1> <you,1>
    2.3 对reduce输出的<k,v>写到HDFS中。

    二、数据倾斜问题:

    数据倾斜就是我们在计算数据的时候,数据的分散度不够,导致大量的数据集中到了一台或者几台机器上计算,这些数据的计算速度远远低于平均计算速度,导致整个计算过程过慢。

    数据倾斜的原理

    1、数据倾斜产生的原因
    我们以Spark和Hive的使用场景为例。他们在做数据运算的时候会设计到,countdistinct、group by、join等操作,这些都会触发Shuffle动作,一旦触发,所有相同key的值就会拉到一个或几个节点上,就容易发生单点问题。

    2、shuffle
    Shuffle是一个能产生奇迹的地方,不管是在Spark还是Hadoop中,它们的作用都是至关重要的。那么在Shuffle如何产生了数据倾斜?

    3、解决数据倾斜的思路
    业务逻辑,我们从业务逻辑的层面上来优化数据倾斜。以上图为例,先单独对hello 进行count,然后再进行整合。

    程序层面,比如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有一个reduce,我们可以先group 再在外面包一层count,就可以了。

    调参方面,Hadoop和Spark都自带了很多的参数和机制来调节数据倾斜,合理利用它们就能解决大部分问题。

    三、

    相关文章

      网友评论

          本文标题:大数据面试题-1

          本文链接:https://www.haomeiwen.com/subject/eokynftx.html