1.高可用的关键机制
源码详解:DefaultCompletedCheckpointStore.addCheckpoint/tryRemoveCompletedCheckpoint
步骤 1:根据checkpointID获取checkpoint path
步骤 2:在s3 path写state数据,接着修改configmap的中checkpoint信息即flink-161511ce1fe78368bc659597e472fb7d-jobmanager-leader的checkpointID-0000000000000102688
步骤 3:把checkpoint信息放到队列里面,然后根据需要保留的completecheckpoint数量(集群配置state.checkpoints.num-retained),删除多余的completecheckpoint
public class DefaultCompletedCheckpointStore<R extends ResourceVersion<R>>
implements CompletedCheckpointStore {
// 主要是缓存completedCheckpoints的路径
private final ArrayDeque<CompletedCheckpoint> completedCheckpoints;
@Override
public void addCheckpoint(
final CompletedCheckpoint checkpoint,
CheckpointsCleaner checkpointsCleaner,
Runnable postCleanup)
throws Exception {
// 省略...
// 1.首先根据checkpointID获取checkpoint path
final String path = completedCheckpointStoreUtil.checkpointIDToName(checkpoint.getCheckpointID());
// 2.然后在s3 path写state数据,接着修改configmap的中checkpoint信息
checkpointStateHandleStore.addAndLock(path, checkpoint);
// 3.最后把checkpoint信息放到队列里面,然后根据需要保留的completecheckpoint数量
completedCheckpoints.addLast(checkpoint);
CheckpointSubsumeHelper.subsume(
completedCheckpoints,
maxNumberOfCheckpointsToRetain,
completedCheckpoint ->
tryRemoveCompletedCheckpoint(
completedCheckpoint,
completedCheckpoint.shouldBeDiscardedOnSubsume(),
checkpointsCleaner,
postCleanup));
// 省略...
}
private void tryRemoveCompletedCheckpoint(
CompletedCheckpoint completedCheckpoint,
boolean shouldDiscard,
CheckpointsCleaner checkpointsCleaner,
Runnable postCleanup)
throws Exception {
if (tryRemove(completedCheckpoint.getCheckpointID())) {
checkpointsCleaner.cleanCheckpoint(
completedCheckpoint, shouldDiscard, postCleanup, ioExecutor);
}
}
}
2.高可用数据详解
2.1 高可用配置
① 采用 s3 作为状态后端
设置 s3 协议的文件路径作为状态后端即 s3://bucket01/flink/savepoints
、s3://bucket01/flink/checkpoints
,设置支持 s3 协议的集群即 s3.endpoint
、s3.access-key
和 s3.secret-key
。
② 基于 Kubernetes 设置高可用配置
high-availability
设置为 org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory,
kubernetes.namespace
是指 kubernetes 的 namespace,kubernetes.service-account 是指 kubernetes 的serviceaccount,high-availability.storageDir
采用 s3 地址,最后 kubernetes.cluster-id
是设置了高可用 configmap 的前缀,例如 flink-dispatcher-leader、flink-161511ce1fe78368bc659597e472fb7d-jobmanager-leader 等
$kubectl get cm |grep flink
flink-config 5 4d19h
flink-161511ce1fe78368bc659597e472fb7d-jobmanager-leader 4 24d
flink-dispatcher-leader 4 28d
flink-resourcemanager-leader 2 28d
flink-restserver-leader 2 28d
$kubectl describe cm flink-config
Name: flink-config
Namespace: default
Labels: <none>
Annotations: <none>
Data
====
flink-conf.yaml:
----
省略...
#共享文件系统S3
s3.endpoint: http://service-minio:9000
s3.path.style.access: true
s3.access-key: admin
s3.secret-key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
#状态后端配置
state.backend: filesystem
state.checkpoints.dir: s3://bucket01/flink/checkpoints
state.savepoints.dir: s3://bucket01/flink/savepoints
#HA和k8s参数
kubernetes.namespace: default
kubernetes.cluster-id: flink
kubernetes.service-account: serviceaccount-flink
high-availability: org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory
high-availability.storageDir: s3://bucket01/flink/ha
2.2 集群 dispatcher 高可用数据
dispatcher 是管理作业的主节点,高可用数据主要有 dispatcher 主节点的地址、非完成状态的作业状态和流图保存地址,其中流图保存地址是 Base64 编码的。如下所示,dispatcher 主节点是akka.tcp://flink@10.244.0.246:8123/user/rpc/dispatcher_1
,作业 161511ce1fe78368bc659597e472fb7d
的状态是 Running
,其流图 jobGraph-161511ce1fe78368bc659597e472fb7d
保存在 s3://bucket01/flink/ha/default/submittedJobGraph307e2d6a5be8
说明:利用 OS 的 Base64 编解码工具,例如,编码是
echo "mmsc" | openssl base64 -e
,解码是echo "bW1zYwo=" | openssl base64 -d
$kubectl describe cm flink-dispatcher-leader
Name: flink-dispatcher-leader
Namespace: default
Labels: app=flink
configmap-type=high-availability
type=flink-native-kubernetes
Annotations: control-plane.alpha.kubernetes.io/leader:
{"holderIdentity":"f7978fe5-962d-4037-aa23-19ff522afbff","leaseDuration":15.000000000,"acquireTime":"2022-05-19T15:09:39.272000Z","renewTi...
Data
====
runningJobsRegistry-161511ce1fe78368bc659597e472fb7d:
----
RUNNING
sessionId:
----
942d4a50-c31f-47fb-939b-94b14a1121fc
address:
----
akka.tcp://flink@10.244.0.246:8123/user/rpc/dispatcher_1
jobGraph-161511ce1fe78368bc659597e472fb7d:
----
rO0ABXNyADtvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuUmV0cmlldmFibGVTdHJlYW1TdGF0ZUhhbmRsZQABHhjxVZcrAgABTAAYd3JhcHBlZFN0cmVhbVN0YXRlSGFuZGxldAAyTG9yZy9hcGFjaGUvZmxpbmsvcnVudGltZS9zdGF0ZS9TdHJlYW1TdGF0ZUhhbmRsZTt4cHNyADlvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuZmlsZXN5c3RlbS5GaWxlU3RhdGVIYW5kbGUE3HXYYr0bswIAAkoACXN0YXRlU2l6ZUwACGZpbGVQYXRodAAfTG9yZy9hcGFjaGUvZmxpbmsvY29yZS9mcy9QYXRoO3hwAAAAAAADcrNzcgAdb3JnLmFwYWNoZS5mbGluay5jb3JlLmZzLlBhdGgAAAAAAAAAAQIAAUwAA3VyaXQADkxqYXZhL25ldC9VUkk7eHBzcgAMamF2YS5uZXQuVVJJrAF4LkOeSasDAAFMAAZzdHJpbmd0ABJMamF2YS9sYW5nL1N0cmluZzt4cHQAN3MzOi8vcnRhL2ZsaW5rL2hhL2RlZmF1bHQvc3VibWl0dGVkSm9iR3JhcGgzMDdlMmQ2YTViZTh4
Events: <none>
$echo "rO0ABXNyADtvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuUmV0cmlldmFibGVTdHJlYW1TdGF0ZUhhbmRsZQABHhjxVZcrAgABTAAYd3JhcHBlZFN0cmVhbVN0YXRlSGFuZGxldAAyTG9yZy9hcGFjaGUvZmxpbmsvcnVudGltZS9zdGF0ZS9TdHJlYW1TdGF0ZUhhbmRsZTt4cHNyADlvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuZmlsZXN5c3RlbS5GaWxlU3RhdGVIYW5kbGUE3HXYYr0bswIAAkoACXN0YXRlU2l6ZUwACGZpbGVQYXRodAAfTG9yZy9hcGFjaGUvZmxpbmsvY29yZS9mcy9QYXRoO3hwAAAAAAADcrNzcgAdb3JnLmFwYWNoZS5mbGluay5jb3JlLmZzLlBhdGgAAAAAAAAAAQIAAUwAA3VyaXQADkxqYXZhL25ldC9VUkk7eHBzcgAMamF2YS5uZXQuVVJJrAF4LkOeSasDAAFMAAZzdHJpbmd0ABJMamF2YS9sYW5nL1N0cmluZzt4cHQAN3MzOi8vcnRhL2ZsaW5rL2hhL2RlZmF1bHQvc3VibWl0dGVkSm9iR3JhcGgzMDdlMmQ2YTViZTh4" | openssl base64 -d
▒▒sr;org.apache.flink.runtime.state.RetrievableStreamStateHandle▒U▒+LwrappedStreamStateHandlet2Lorg/apache/flink/runtime/state/StreamStateHandle;xpsr9org.apache.flink.runtime.state.filesystem.FileStateHandle▒u▒b▒J stateSizefilePathtLorg/apache/flink/core/fs/Path;xpr▒srorg.apache.flink.core.fs.PathLuritLjava/net/URI;xpsr
java.net.URI▒x.C▒I▒LstringtLjava/lang/String;xpt7s3://bucket01/flink/ha/default/submittedJobGraph307e2d6a5be8
2.3 作业的 jobmanager 高可用数据
作业的高可用数据主要有 作业管理节点的地址、当前作业的checkpoint 最新数据的保存地址,其中checkpoint 保存地址是 Base64 编码的。如下所示,作业管理节点是akka.tcp://flink@10.244.0.246:8123/user/rpc/jobmanager_2
,该作业最新的 checkpoint 是 checkpointID-0000000000000102688
,其保存地址是 s3://bucket01/flink/ha/default/completedCheckpointf07724c0946a
$kubectl describe cm flink-161511ce1fe78368bc659597e472fb7d-jobmanager-leader
Name: flink-161511ce1fe78368bc659597e472fb7d-jobmanager-leader
Namespace: default
Labels: app=flink
configmap-type=high-availability
type=flink-native-kubernetes
Annotations: control-plane.alpha.kubernetes.io/leader:
{"holderIdentity":"f7978fe5-962d-4037-aa23-19ff522afbff","leaseDuration":15.000000000,"acquireTime":"2022-05-19T15:09:39.988000Z","renewTi...
Data
====
address:
----
akka.tcp://flink@10.244.0.246:8123/user/rpc/jobmanager_2
checkpointID-0000000000000102688:
----
rO0ABXNyADtvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuUmV0cmlldmFibGVTdHJlYW1TdGF0ZUhhbmRsZQABHhjxVZcrAgABTAAYd3JhcHBlZFN0cmVhbVN0YXRlSGFuZGxldAAyTG9yZy9hcGFjaGUvZmxpbmsvcnVudGltZS9zdGF0ZS9TdHJlYW1TdGF0ZUhhbmRsZTt4cHNyADlvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuZmlsZXN5c3RlbS5GaWxlU3RhdGVIYW5kbGUE3HXYYr0bswIAAkoACXN0YXRlU2l6ZUwACGZpbGVQYXRodAAfTG9yZy9hcGFjaGUvZmxpbmsvY29yZS9mcy9QYXRoO3hwAAAAAAAAFyhzcgAdb3JnLmFwYWNoZS5mbGluay5jb3JlLmZzLlBhdGgAAAAAAAAAAQIAAUwAA3VyaXQADkxqYXZhL25ldC9VUkk7eHBzcgAMamF2YS5uZXQuVVJJrAF4LkOeSasDAAFMAAZzdHJpbmd0ABJMamF2YS9sYW5nL1N0cmluZzt4cHQAOXMzOi8vcnRhL2ZsaW5rL2hhL2RlZmF1bHQvY29tcGxldGVkQ2hlY2twb2ludGYwNzcyNGMwOTQ2YXg=
counter:
----
102689
sessionId:
----
766ea025-af00-4b6b-8700-a80c9fa2a4e5
Events: <none>
$echo "rO0ABXNyADtvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuUmV0cmlldmFibGVTdHJlYW1TdGF0ZUhhbmRsZQABHhjxVZcrAgABTAAYd3JhcHBlZFN0cmVhbVN0YXRlSGFuZGxldAAyTG9yZy9hcGFjaGUvZmxpbmsvcnVudGltZS9zdGF0ZS9TdHJlYW1TdGF0ZUhhbmRsZTt4cHNyADlvcmcuYXBhY2hlLmZsaW5rLnJ1bnRpbWUuc3RhdGUuZmlsZXN5c3RlbS5GaWxlU3RhdGVIYW5kbGUE3HXYYr0bswIAAkoACXN0YXRlU2l6ZUwACGZpbGVQYXRodAAfTG9yZy9hcGFjaGUvZmxpbmsvY29yZS9mcy9QYXRoO3hwAAAAAAAAFyhzcgAdb3JnLmFwYWNoZS5mbGluay5jb3JlLmZzLlBhdGgAAAAAAAAAAQIAAUwAA3VyaXQADkxqYXZhL25ldC9VUkk7eHBzcgAMamF2YS5uZXQuVVJJrAF4LkOeSasDAAFMAAZzdHJpbmd0ABJMamF2YS9sYW5nL1N0cmluZzt4cHQAOXMzOi8vcnRhL2ZsaW5rL2hhL2RlZmF1bHQvY29tcGxldGVkQ2hlY2twb2ludGYwNzcyNGMwOTQ2YXg=" | openssl base64 -d
▒▒sr;org.apache.flink.runtime.state.RetrievableStreamStateHandle▒U▒+LwrappedStreamStateHandlet2Lorg/apache/flink/runtime/state/StreamStateHandle;xpsr9org.apache.flink.runtime.state.filesystem.FileStateHandle▒u▒b▒J stateSizefilePathtLorg/apache/flink/core/fs/Path;xp(srorg.apache.flink.core.fs.PathLuritLjava/net/URI;xpsr
java.net.URI▒x.C▒I▒LstringtLjava/lang/String;xpt9s3://bucket01/flink/ha/default/completedCheckpointf07724c0946a
网友评论