美文网首页
Centos 下 Apache 原生 Hbase + Phoen

Centos 下 Apache 原生 Hbase + Phoen

作者: etrols | 来源:发表于2019-07-18 20:28 被阅读0次

    前置条件

    • 各软件版本:hadoop-2.7.7、hbase-2.1.5 、jdk1.8.0_211、zookeeper-3.4.10、apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz
    • 至少 3 台 Centos 服务器,主机名分别为:hadoop0001、hadoop0002、hadoop0003
    • 这里所有的软件将安装在 hadoop 用户的 /home/hadoop/app 目录下
    • 在每台服务器设置 hosts
    [hadoop@hadoop0001 ~]$ vim /etc/hosts
    

    host 内容如下:

    # 127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
    # ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
    10.2.1.102  hadoop0001
    10.2.1.103  hadoop0002
    10.2.1.104  hadoop0003
    
    • ssh 免密登录(此步骤可以忽略,但 Hadoop 每次启动都需要输入密码)

    在 hadoop0001 终端执行以下命令:

    [hadoop@hadoop0001 ~]$ ssh-keygen -t rsa -P "" //一直回车即可
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> hadoop@hadoop0002:~/.ssh/authorized_keys
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> hadoop@hadoop0003:~/.ssh/authorized_keys
    

    在 hadoop0002 终端执行以下命令:

    [hadoop@hadoop0001 ~]$ ssh-keygen -t rsa -P "" //一直回车即可
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> hadoop@hadoop0001:~/.ssh/authorized_keys
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> hadoop@hadoop0003:~/.ssh/authorized_keys
    

    在 hadoop0003 终端执行以下命令:

    [hadoop@hadoop0001 ~]$ ssh-keygen -t rsa -P "" //一直回车即可
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> hadoop@hadoop0001:~/.ssh/authorized_keys
    [hadoop@hadoop0001 ~]$ cat ~/.ssh/id_rsa.pub >> hadoop@hadoop0002:~/.ssh/authorized_keys
    

    验证免密登录

    [hadoop@hadoop0001 ~]$ ssh localhost
    Last login: Fri Jan  4 13:45:54 2019 //出现这个结果表示免密登录成功
    

    JDK 环境变量配置:

    # 用户家目录下
    [hadoop@hadoop0001 ~]$ vim .bashrc
    

    添加以下内容:

    JAVA_HOME=/home/hadoop/app/jdk1.8.0_192
    CLASSPATH=.:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar 
    PATH=$JAVA_HOME/bin:$HOME/bin:$HOME/.local/bin:$PATH
    

    最后使环境变量生效:

    # 用户家目录下
    [hadoop@hadoop0001 ~]$ . .bashrc
    

    JDK 验证:

    java -version
    java version "1.8.0_192"
    Java(TM) SE Runtime Environment (build 1.8.0_192-b12)
    Java HotSpot(TM) 64-Bit Server VM (build 25.192-b12, mixed mode) java -version
    

    将 hadoop0001 的 JDK 复制到其他服务器上

    [hadoop@hadoop0001 app]$ scp -r jdk1.8.0_192/ hadoop@hadoop0002:~/app/jdk1.8.0_192/
    [hadoop@hadoop0001 app]$ scp -r jdk1.8.0_192/ hadoop@hadoop0003:~/app/jdk1.8.0_192/
    [hadoop@hadoop0001 ~]$ scp /etc/profile hadoop@hadoop0002:/etc/profile
    [hadoop@hadoop0001 ~]$ scp /etc/profile hadoop@hadoop0003:/etc/profile
    
    • NTP 服务搭建
      每台服务器上安装 ntp
    [hadoop@hadoop0001 ~]$ yum install -y ntp
    

    hadoop0001 配置 ntp

    [hadoop@hadoop0001 ~]$ vim /etc/ntp.conf
    

    添加以下配置:

    restrict 10.2.1.0 mask 255.255.255.0 nomodify notrap
    logfile /var/log/ntpd.log
    server ntp1.aliyun.com
    server ntp2.aliyun.com
    server ntp3.aliyun.com
    server 127.0.0.1
    fudge 127.0.0.1 stratum 10
    

    完整配置文件(ntp.conf):

    # For more information about this file, see the man pages
    # ntp.conf(5), ntp_acc(5), ntp_auth(5), ntp_clock(5), ntp_misc(5), ntp_mon(5).
    
    driftfile /var/lib/ntp/drift
    
    logfile /var/log/ntpd.log
    
    # Permit time synchronization with our time source, but do not
    # permit the source to query or modify the service on this system.
    restrict default nomodify notrap nopeer noquery
    
    # Permit all access over the loopback interface.  This could
    # be tightened as well, but to do so would effect some of
    # the administrative functions.
    restrict 127.0.0.1
    restrict ::1
    
    # Hosts on local network are less restricted.
    #restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
    restrict 10.2.1.0 mask 255.255.255.0 nomodify notrap
    
    # Use public servers from the pool.ntp.org project.
    # Please consider joining the pool (http://www.pool.ntp.org/join.html).
    #server 0.centos.pool.ntp.org iburst
    #server 1.centos.pool.ntp.org iburst
    #server 2.centos.pool.ntp.org iburst
    #server 3.centos.pool.ntp.org iburst
    server ntp1.aliyun.com
    server ntp2.aliyun.com
    server ntp3.aliyun.com
    
    server 127.0.0.1
    fudge 127.0.0.1 stratum 10
    
    #broadcast 192.168.1.255 autokey        # broadcast server
    #broadcastclient                        # broadcast client
    #broadcast 224.0.1.1 autokey            # multicast server
    #multicastclient 224.0.1.1              # multicast client
    #manycastserver 239.255.254.254         # manycast server
    #manycastclient 239.255.254.254 autokey # manycast client
    
    # Enable public key cryptography.
    #crypto
    
    includefile /etc/ntp/crypto/pw
    
    # Key file containing the keys and key identifiers used when operating
    # with symmetric key cryptography. 
    keys /etc/ntp/keys
    
    # Specify the key identifiers which are trusted.
    #trustedkey 4 8 42
    
    # Specify the key identifier to use with the ntpdc utility.
    #requestkey 8
    
    # Specify the key identifier to use with the ntpq utility.
    #controlkey 8
    
    # Enable writing of statistics records.
    #statistics clockstats cryptostats loopstats peerstats
    
    # Disable the monitoring facility to prevent amplification attacks using ntpdc
    # monlist command when default restrict does not include the noquery flag. See
    # CVE-2013-5211 for more details.
    # Note: Monitoring will not be disabled with the limited restriction flag.
    disable monitor
    

    时间服务器可参考:https://www.pool.ntp.org/zone/asia

    时间同步:

    [hadoop@hadoop0001 ~]$ sudo ntpdate -u ntp1.aliyun.com
    16 Jul 16:46:39 ntpdate[12700]: adjust time server 120.25.115.20 offset -0.002546 sec
    

    启动时间服务:

    [hadoop@hadoop0001 ~]$ sudo systemctl start ntpd
    

    时间服务开机自启:

    [hadoop@hadoop0001 ~]$ sudo systemctl enable ntpd
    

    在 hadoop0002 和 hadoop0003 配置 ntp 客户端
    在 /etc/ntp.conf 配置如下代码

    server hadoop0001
    

    查看 ntp 是否同步
    如下表示未同步

    [root@hadoop0002 ~]# ntpstat 
    unsynchronised
      time server re-starting
       polling server every 8 s
    

    如下表示已同步

    [root@hadoop0001 ~]# ntpstat
    synchronised to NTP server (120.25.115.20) at stratum 3 
       time correct to within 976 ms
       polling server every 64 s
    

    注意:同步需要 10 分钟左右

    Hadoop 安装

    下载 Hadoop

    wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.7.7/hadoop-2.7.7.tar.gz
    
    

    解压 Hadoop

    tar -zxvf hadoop-2.7.7.tar.gz
    

    配置 hadoop-env.sh

    # 根据实际业务需要配置
    export HADOOP_HEAPSIZE=1024
    

    配置 mapred-env.sh

    export JAVA_HOME=${JAVA_HOME}
    

    配置 yarn-env.sh

    # 根据实际业务需要配置
    JAVA_HEAP_MAX=-Xmx512m
    YARN_HEAPSIZE=1024
    

    配置 core-site.xml

    <!-- hdfs 端口 -->
      <property>
        <name>fs.defaultFS</name>
        <value>hdfs://hadoop0001:8020</value>
      </property>
      <!-- hadoop 临时数据目录 -->
      <property>
        <name>hadoop.tmp.dir</name>
        <value>/home/hadoop/application/hadoop-2.7.7/data</value>
      </property>
      <property>
        <name>fs.trash.interval</name>
        <value>14400</value>
      </property>
    

    配置 yarn-site.xml

    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop0001</value>
        <discription>指定 YARN 的 ResourceManager 的地址</discription>
      </property>
    
      <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
        <discription>日志聚集功能</discription>
      </property>
    
      <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
        <discription>Reducer 获取数据方式</discription>
      </property>
    
      <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
      </property>
    
      <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>604800</value>
        <discription>日志保留时间设置 7 天</discription>
      </property>
    
      <property>
        <name>yarn.nodemanager.pmem-check-enabled</name>
        <value>false</value>
      </property>
    
      <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
      </property>
    
      <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>15000</value>
        <discription>每个节点可用内存,单位MB</discription>
      </property>
    
      <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>100</value>
        <discription>单个任务可申请最少内存,默认1024MB</discription>
      </property>
    
      <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>15000</value>
        <discription>单个任务可申请最大内存,默认8192MB</discription>
      </property>
    
      <property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>2</value>
        <discription>NodeManager总的可用虚拟CPU个数</discription>
      </property>
    
      <property>
        <name>yarn.scheduler.minimum-allocation-vcores</name>
        <value>1</value>
        <discription>单个可申请的最小。比如设置为1,则运行MapRedce作业时,每个Task最少可申请1个虚拟CPU</discription>
      </property>
    
      <property>
        <name>yarn.scheduler.maximum-allocation-vcores</name>
        <value>4</value>
        <discription>单个可申请的最大虚拟CPU个数。比如设置为4,则运行MapRedce作业时,最多可申请4个虚拟CPU</discription>
      </property>
    
      <property>
        <name>yarn.resourcemanager.scheduler.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
      </property>
    
      <property>
        <name>yarn.scheduler.fair.preemption</name>
        <value>true</value>
      </property>
    
      <property>
        <name>yarn.scheduler.fair.preemption.cluster-utilization-threshold</name>
        <value>0.8</value>
      </property>
    

    配置 hdfs-site.xml

    <!-- hdfs 数据副本数目  -->
      <property>
        <name>dfs.replication</name>
        <value>3</value>
      </property>
    
      <!-- hdfs 存储 fsimage 的地方
             <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/home/hadoop/application/hadoop-2.8.5/data/hdfs/name</value>
      </property>
      -->
    
      <!-- hdfs 数据存放 block 的地方
             <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/home/hadoop/application/hadoop-2.8.5/data/hdfs/data</value>
      </property>
      -->
    
      <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>hadoop0001:50090</value>
      </property>
    
      <property>
        <name>dfs.namenode.http-address</name>
        <value>hadoop0001:50070</value>
      </property>
    
      <property>
        <name>dfs.permissions.enabled</name>
        <value>false</value>
      </property>
    

    配置 mapred-site.xml

    <!-- 历史服务器端地址 -->
      <property>
        <name>mapreduce.jobhistory.address</name>
        <value>hadoop0001:10020</value>
      </property>
      <!-- 历史服务器 web 端地址 -->
      <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>hadoop0001:19888</value>
      </property>
      <!-- 指定 MR 运行在 Yarn 上 -->
      <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
      </property>
    

    配置 slaves (/home/hadoop/app/hadoop-2.7.7)

    hadoop0001
    hadoop0002
    hadoop0003
    

    配置 Hadoop 环境变量

    在用户家目录下的 .bashrc

    # added by Hadoop installer
    export HADOOP_HOME=/home/hadoop/app/hadoop-2.7.7
    export HADOOP_INSTALL=$HADOOP_HOME
    export HADOOP_MAPRED_HOME=$HADOOP_HOME
    export HADOOP_COMMON_HOME=$HADOOP_HOME
    export HADOOP_HDFS_HOME=$HADOOP_HOME
    export YARN_HOME=$HADOOP_HOME
    export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
    export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib:$HADOOP_COMMON_LIB_NATIVE_DIR"
    export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin
    export CLASSPATH=$CLASSPATH:$HADOOP_HOME/lib
    

    使环境生效:

    . .bashrc
    

    将配置好的 hadoop 发送到其他服务器

    [hadoop@hadoop0001 app]$ scp -r /hadoop-2.7.7 hadoop@hadoop0002:~/app/hadoop-2.7.7
    [hadoop@hadoop0001 app]$ scp -r /hadoop-2.7.7 hadoop@hadoop0003:~/app/hadoop-2.7.7
    [hadoop@hadoop0001 ~]$ scp .bashrc hadoop@hadoop0002:~/
    [hadoop@hadoop0001 ~]$ scp .bashrc hadoop@hadoop0003:~/
    

    在主 master 初始化 namenode

    hadoop namenode -format
    

    启动 hadoop 集群

    # mater 节点 出现 NameNode、SecondaryNameNode,其他机器上出现 DataNode 说明集群搭建成功
    start-all.sh
    

    停止集群

    stop-all.sh
    

    Zookeeper 分布式集群搭建

    下载 Zookeeper

    wget https://archive.apache.org/dist/zookeeper/zookeeper-3.4.10/zookeeper-3.4.10.tar.gz
    

    解压 Zookeeper

    tar -zxvf zookeeper-3.4.10.tar.gz
    

    配置 zoo.cfg

    cp zoo_sample.cfg zoo.cfg
    vim zoo.cfg
    

    配置内容如下:

    # The number of milliseconds of each tick
    tickTime=2000
    # The number of ticks that the initial 
    # synchronization phase can take
    initLimit=20
    # The number of ticks that can pass between 
    # sending a request and getting an acknowledgement
    syncLimit=10
    # the directory where the snapshot is stored.
    # do not use /tmp for storage, /tmp here is just 
    # example sakes.
    dataDir=/root/app/zookeeper-3.4.10/data
    dataLogDir=/root/app/zookeeper-3.4.10/logs
    # the port at which the clients will connect
    clientPort=2181
    # the maximum number of client connections.
    # increase this if you need to handle more clients
    #maxClientCnxns=60
    #
    # Be sure to read the maintenance section of the 
    # administrator guide before turning on autopurge.
    #
    # http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
    #
    # The number of snapshots to retain in dataDir
    #autopurge.snapRetainCount=3
    # Purge task interval in hours
    # Set to "0" to disable auto purge feature
    #autopurge.purgeInterval=1
    server.1=hadoop0001:2888:3888
    server.2=hadoop0002:2888:3888
    server.3=hadoop0003:2888:3888
    

    在 zookeeper 根目录下创建 data 和 logs 文件夹

    mkdir data
    mkdir logs
    

    在 data 目录下创建 myid

    vim myid
    

    内容为:

    1
    

    配置 zookeeper 环境变量

    在用户家目录下的 .bashrc

    # added by zookeeper installer
    export ZOOKEEPER_HOME=/home/hadoop/app/zookeeper-3.4.10
    export CLASSPATH=$CLASSPATH:$ZOOKEEPER_HOME/lib
    export PATH=$PATH:$ZOOKEEPER_HOME/bin
    

    将配置好的 zookeeper 发送到其他机器上

    [hadoop@hadoop0001 app]$ scp -r /zookeeper-3.4.10 hadoop@hadoop0002:~/app/zookeeper-3.4.10
    [hadoop@hadoop0001 app]$ scp -r /zookeeper-3.4.10 hadoop@hadoop0003:~/app/zookeeper-3.4.10
    [hadoop@hadoop0001 ~]$ scp .bashrc hadoop@hadoop0002:~/
    [hadoop@hadoop0001 ~]$ scp .bashrc hadoop@hadoop0003:~/
    

    修改其他机器的 myid

    将其他节点的 myid 修改为 2、3,保证每台机器的 myid 在集群内唯一

    启动 zookeeper 服务

    每台机器执行:

    zkServer.sh start
    

    查看 zookeeper 状态

    zkServer.sh status
    

    Hbase HA 分布式集群搭建

    下载 hbase

    wget http://mirror.bit.edu.cn/apache/hbase/2.1.5/hbase-2.1.5-bin.tar.gz
    
    

    解压 hbase

    tar -zxvf hbase-2.1.5-bin.tar.gz
    

    配置 hbase-site.xml

      <property>
        <name>hbase.rootdir</name>
        <value>hdfs://hadoop0001:8020/hbase</value>
      </property>
    
      <property>
        <name>hbase.cluster.distributed</name>
        <value>true</value>
      </property>
    
      <!-- 0.98 后的新变动,之前版本没有.port,默认端口为 60000 -->
      <property>
        <name>hbase.master.port</name>
        <value>16000</value>
      </property>
    
      <property>
        <name>hbase.zookeeper.quorum</name>
        <value>hadoop0001,hadoop0002,hadoop0003</value>
      </property>
    
      <property>
        <name>hbase.regionserver.restart.on.zk.expire</name>
        <value>true</value>
      </property>
    
      <property>
        <name>hbase.coprocessor.abortonerror</name>
        <value>false</value>
      </property>
    
      <property>
        <name>hbase.zookeeper.property.dataDir</name>
        <value>/root/app/zookeeper-3.4.10/data</value>
      </property>
    
      <property>
        <name>hbase.unsafe.stream.capability.enforce</name>
        <value>false</value>
        <description>
            Controls whether HBase will check for stream capabilities (hflush/hsyn    c).
    
            Disable this if you intend to run on LocalFileSystem, denoted by a roo    tdir
            with the 'file://' scheme, but be mindful of the NOTE below.
    
            WARNING: Setting this to false blinds you to potential data loss and
            inconsistent system state in the event of process and/or node failures    . If
            HBase is complaining of an inability to use hsync or hflush it's most
            likely not a false positive.
        </description>
      </property>
    

    配置 regionservers

    在 hbase 根目录下的 conf 目录下的 regionservers 文件加入如下配置:

    # 主机名即 host
    hadoop0001
    hadoop0002
    hadoop0003
    

    配置 hbase 环境变量

    在用户家目录下的 .bashrc

    # added by hbase installer
    export HBASE_HOME=/root/app/hbase-2.1.5/
    export CLASSPATH=$CLASSPATH:$HBASE_HOME/lib
    export PATH=$PATH:$HBASE_HOME/bin
    

    将配置好的 hbase 发送到其他机器

    [hadoop@hadoop0001 app]$ scp -r /hbase-2.1.5 hadoop@hadoop0002:~/app/hbase-2.1.5
    [hadoop@hadoop0001 app]$ scp -r /hbase-2.1.5 hadoop@hadoop0003:~/app/hbase-2.1.5
    [hadoop@hadoop0001 ~]$ scp .bashrc hadoop@hadoop0002:~/
    [hadoop@hadoop0001 ~]$ scp .bashrc hadoop@hadoop0003:~/
    

    配置 backup-masters(备用 master 节点)

    在 hbase 根目录下的 conf 目录下的 backup-masters文件加入如下配置:

    # master 节点配置,可配置多个
    hadoop0002
    

    启动 hbse 集群

    start-hbase.sh
    

    注意:在主节点出现 HMaster、HRegionServer(有可能没有,属于正常)及备用节点 出现 HMaster、HRegionServer;其他节点出现 HRegionServer;说明Hbase集群搭建成功;

    停止 hbase 集群

    stop-hbase.sh
    

    Phoenix 集群安装

    下载 Phoenix

    wget http://mirror.bit.edu.cn/apache/phoenix/apache-phoenix-5.0.0-HBase-2.0/bin/apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz
    

    解压 Phoenix

    tar -zxvf apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz
    

    复制以下 jar 包到所有节点的 Habse 根目录下的 lib 目录下

    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ cp phoenix-5.0.0-HBase-2.0-queryserver.jar ~/app/hbase-2.1.5/lib/
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ scp phoenix-5.0.0-HBase-2.0-queryserver.jar hadoop@hadoop0002:~/app/hbase-2.1.5/lib/
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ scp phoenix-5.0.0-HBase-2.0-queryserver.jar hadoop@hadoop0003:~/app/hbase-2.1.5/lib/
    
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ cp phoenix-5.0.0-HBase-2.0-server.jar ~/app/hbase-2.1.5/lib/
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ scp phoenix-5.0.0-HBase-2.0-server.jar hadoop@hadoop0002:~/app/hbase-2.1.5/lib/
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ scp phoenix-5.0.0-HBase-2.0-server.jar hadoop@hadoop0003:~/app/hbase-2.1.5/lib/
    
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ cp phoenix-core-5.0.0-HBase-2.0.jar ~/app/hbase-2.1.5/lib/
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ scp phoenix-core-5.0.0-HBase-2.0.jar hadoop@hadoop0002:~/app/hbase-2.1.5/lib/
    [hadoop@hadoop0001 apache-phoenix-5.0.0-HBase-2.0-bin]$ scp phoenix-core-5.0.0-HBase-2.0.jar hadoop@hadoop0003:~/app/hbase-2.1.5/lib/
    

    配置 Phoenix 环境变量(无需复制到其他节点)

    # added by phoenix installer
    export PHOENIX_HOME=/root/app/apache-phoenix-5.0.0-HBase-2.0-bin
    export CLASSPATH=$CLASSPATH:$PHOENIX_HOME
    export PATH=$PATH:$PHOENIX_HOME/bin
    

    启动 Phoenix queryserver 模式

    queryserver.py start
    

    停止 Phoenix queryserver 模式

    queryserver.py stop
    

    连接 Phoenix queryserver

    sqlline-thin.py hadoop0001:8765
    

    客户端 jdbc 连接(jdbcUrl)

    jdbc:phoenix:thin:url=http://10.2.1.102:8765?doAs=alice
    

    相关文章

      网友评论

          本文标题:Centos 下 Apache 原生 Hbase + Phoen

          本文链接:https://www.haomeiwen.com/subject/euednqtx.html