-
最小二乘法概念:
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法 -
推导过程
给定函数y=f(x),在点,, ,,,, 处的函数值,,,,,,
这里写图片描述
求以多项式p(x)=+x+ +......+* 使得
为了求得负荷条件的a值,对等式右边对 i=0,1,2....k 求偏导,得到结果为k+1个等式:
a0
这里写图片描述
.....
这里写图片描述
将方程整理,得到:
这里写图片描述
把这些等式表示成矩阵的形式,就可以得到下面的矩阵:
这里写图片描述
3 代码实现:
利用python语言来进行实现曲线拟合
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
import random
fig = plt.figure()
ax = fig.add_subplot(111)
#阶数为9阶
order=9
#生成曲线上的各个点
x = np.arange(-1,1,0.02)
y = [((a*a-1)*(a*a-1)*(a*a-1)+0.5)*np.sin(a*2) for a in x]
# 生成的曲线上的各个点偏移一下,并放入到xa,ya中去
i = 0
xa = []
ya = []
for xx in x:
yy = y[i]
d = float(random.randint(60, 140)) / 100
# ax.plot([xx*d],[yy*d],color='m',linestyle='',marker='.')
i += 1
xa.append(xx * d)
ya.append(yy * d)
'''''for i in range(0,5):
xx=float(random.randint(-100,100))/100
yy=float(random.randint(-60,60))/100
xa.append(xx)
ya.append(yy)'''
ax.plot(xa, ya, color='m', linestyle='', marker='.')
# 求出等式左边的矩阵A
matA=[]
for i in range(0,order+1):
mat=[]
for j in range(0+i,order+1+i):
sumA=0
for xx in xa:
sumA=sumA+xx**j
mat.append(sumA)
matA.append(mat)
A=np.array(matA)
# 求出右边的等式B
matB=[]
for j in range(0,order+1):
sumB=0
for xx,yy in zip(xa,ya):
sumB=sumB+xx**j*yy
matB.append(sumB)
B=np.array(matB)
# 另外一种该方法求A
# 求出等式左边的矩阵A
A=[]
for xx in xa:
matA = []
for i in range(0,order+1):
mat = []
for j in range(0+i,order+1+i):
mat.append(xx**j)
matA.append(mat)
A.append(matA)
# 求和
A=sum(np.array(A))
a=np.linalg.solve(A,B)
# 定义拟合函数
def fun_solve(x,a):
y=0
for i in range(len(a)):
y+=a[i]*x**i
return y
xxa= np.arange(-1,1.06,0.01)
yya=[]
for xxaa in xxa:
yya.append(fun_solve(xxaa,a))
ax.plot(xxa,yya,color='g',linestyle='-',marker='')
这里写图片描述
参考博文:
https://blog.csdn.net/jairuschan/article/details/7517773/#commentBox
https://blog.csdn.net/einstein10147/article/details/79205109
网友评论