1.百科
2.源代码
- 系统环境
python 3.6
scikit-learn==0.19.1
# utf-8
import os
import math
import numpy as np
'''
不使用NLTK和Scikits-Learn包,构建文本向量空间模型
reference:
https://mp.weixin.qq.com/s/DisMF8frY2pkpGMfrWk4Wg
'''
def load_doc_list(file):
with open(file, 'r') as f:
return f.read().splitlines()
'''
第一步:Basic term frequencies
frequencies:计算文本各行的单词频度(出现次数),存在问题,文本空间大小不一样
build_lexicon:创建词汇表,以便构造相同文本空间向量(特征向量)
tf:调用freq,计算单词在文档中出现的次数
'''
def frequencies(doc_list):
from collections import Counter
counters=[]
for doc in doc_list:
c=Counter()
for word in doc.split():
c[word]+=1
counters.append(c)
return counters
def build_lexicon(corpus):
lexicon=set()
for doc in corpus:
lexicon.update([w for w in doc.split()])
return lexicon
def tf(term,doc):
return freq(term,doc)
def freq(term,doc):
return doc.split().count(term)
'''
第二步:Normalizing vectors to L2 Norm = 1
如果有些单词在一个单一的文件中过于频繁地出现,它们将扰乱我们的分析。
我们想要对每一个词频向量进行比例缩放,使其变得更具有代表性。换句话说,我们需要进行向量标准化,需要确保每个向量的L2范数等于1
l2_normalizer
'''
def l2_normalizer(vec):
denom = np.sum([el**2 for el in vec])
return [(el / math.sqrt(denom)) for el in vec]
'''
第三步:逆向文件频率(IDF)频率加权
利用反文档词频(IDF)调整每一个单词权重
对于词汇中的每一个词,我们都有一个常规意义上的信息值,用于解释他们在整个语料库中的相对频率。
回想一下,这个信息值是一个“逆”!即信息值越小的词,它在语料库中出现的越频繁。
为了得到TF-IDF加权词向量,你必须做一个简单的计算:tf * idf。
numDocsContaining
idf
build_idf_matrix
'''
def numDocsContaining(word, doclist):
doccount = 0
for doc in doclist:
if freq(word, doc) > 0:
doccount +=1
return doccount
def idf(word, doclist):
n_samples = len(doclist)
df = numDocsContaining(word, doclist)
return math.log(n_samples / 1+df)
def build_idf_matrix(idf_vector):
'''
将IDF向量转化为BxB的矩阵了,矩阵的对角线就是IDF向量,这样就可以用反文档词频矩阵乘以每一个词频向量
'''
idf_mat = np.zeros((len(idf_vector), len(idf_vector)))
np.fill_diagonal(idf_mat, idf_vector)
return idf_mat
if __name__ == '__main__':
os.chdir('./python')
file="vector.txt"
doc_list=load_doc_list(file)
# counters=frequencies(doc_list)
# for counter in counters:
# print(counter)
vocabulary=build_lexicon(doc_list)
# print(vocabulary)
doc_term_matrix =[]
for doc in doc_list:
# print("doc = ",doc)
doc_term_vector = [tf(word, doc) for word in vocabulary]
# print("vec = ",doc_term_vector)
doc_term_matrix.append(doc_term_vector)
# print(doc_term_matrix)
doc_term_matrix_l2 = []
for vec in doc_term_matrix:
doc_term_matrix_l2.append(l2_normalizer(vec))
# print('A regular old document term matrix: ')
# print(np.matrix(doc_term_matrix))
# print('A document term matrix with row-wise L2 norms of 1:')
# print(np.matrix(doc_term_matrix_l2))
idf_vector = [idf(word, doc_list) for word in vocabulary]
print('Our vocabulary vector is [' + ', '.join(list(vocabulary)) + ']')
print('The inverse document frequency vector is [' + ', '.join(
format(freq, 'f') for freq in idf_vector) + ']')
idf_matrix = build_idf_matrix(idf_vector)
# print(idf_matrix)
#tf*idf
doc_term_matrix_tfidf = []
#performing tf-idf matrix multiplication
for tf_vector in doc_term_matrix:
doc_term_matrix_tfidf.append(np.dot(tf_vector, idf_matrix))
#normalizing
doc_term_matrix_tfidf_l2 = []
for tf_vector in doc_term_matrix_tfidf:
doc_term_matrix_tfidf_l2.append(l2_normalizer(tf_vector))
print(vocabulary)
print(np.matrix(doc_term_matrix_tfidf_l2)) # np.matrix() just to make it easier to look at
网友评论