美文网首页
用python实现文本情感分析

用python实现文本情感分析

作者: melo4 | 来源:发表于2018-03-27 20:26 被阅读0次

    注:本文转载自知乎专栏

    原文链接:https://zhuanlan.zhihu.com/p/23225934

    情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。

    原理

    比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。”

    ① 情感词

    要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。出现一个积极词就+1,出现一个消极词就-1。
    里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分值是不合理的,下面一步步修改它。

    ② 程度词

    “好”,“流畅”和‘烂“前面都有一个程度修饰词。”极好“就比”较好“或者”好“的情感更强,”太烂“也比”有点烂“情感强得多。所以需要在找到情感词后往前找一下有没有程度修饰,并给不同的程度一个权值。比如”极“,”无比“,”太“就要把情感分值4,”较“,”还算“就情感分值2,”只算“,”仅仅“这些就0.5了。那么这句话的情感分值就是:41+12-14+1=3。

    ③ 感叹号

    可以发现太烂了后面有感叹号,叹号意味着情感强烈。因此发现叹号可以为情感值+2. 那么这句话的情感分值就变成了:41+12-1*4-2+1 = 1

    ④ 否定词

    明眼人一眼就看出最后面那个”好“并不是表示”好“,因为前面还有一个”不“字。所以在找到情感词的时候,需要往前找否定词。比如”不“,”不能“这些词。而且还要数这些否定词出现的次数,如果是单数,情感分值就-1,但如果是偶数,那情感就没有反转,还是1。在这句话里面,可以看出”好“前面只有一个”不“,所以”好“的情感值应该反转,-1。
    因此这句话的准确情感分值是:4
    1+12-14-2+1*-1 = -1

    ⑤ 积极和消极分开来

    再接下来,很明显就可以看出,这句话里面有褒有贬,不能用一个分值来表示它的情感倾向。而且这个权值的设置也会影响最终的情感分值,敏感度太高了。因此对这句话的最终的正确的处理,是得出这句话的一个积极分值,一个消极分值(这样消极分值也是正数,无需使用负数了)。它们同时代表了这句话的情感倾向。所以这句评论应该是”积极分值:6,消极分值:7。

    ⑥ 以分句的情感为基础

    再仔细一步,详细一点,一条评论的情感分值是由不同的分句加起来的,因此要得到一条评论的情感分值,就要先计算出评论中每个句子的情感分值。这条例子评论有四个分句,因此其结构如下([积极分值, 消极分值]):[[4, 0], [2, 0], [0, 6], [0, 1]] 。
    以上就是使用情感词典来进行情感分析的主要流程了,算法的设计也会按照这个思路来实现。

    算法设计

    第一步:读取评论数据,对评论进行分句。
    第二步:查找对分句的情感词,记录积极还是消极,以及位置。
    第三步:往情感词前查找程度词,找到就停止搜寻。为程度词设权值,乘以情感值。
    第四步:往情感词前查找否定词,找完全部否定词,若数量为奇数,乘以-1,若为偶数,乘以1。
    第五步:判断分句结尾是否有感叹号,有叹号则往前寻找情感词,有则相应的情感值+2。
    第六步:计算完一条评论所有分句的情感值,用数组(list)记录起来。
    第七步:计算并记录所有评论的情感值。
    第八步:通过分句计算每条评论的积极情感均值,消极情感均值,积极情感方差,消极情感方差。

    实战

    这里是作者参考已有代码,结合自己需要,对代码进行了简单的修改。本脚本运行环境是python3.5 ,使用2.x的盆友们见谅。

    import jieba
    import numpy as np
    
    #打开词典文件,返回列表
    def open_dict(Dict = 'hahah', path=r'/Users/apple888/PycharmProjects/Textming/Sent_Dict/Hownet/'):
        path = path + '%s.txt' % Dict
        dictionary = open(path, 'r', encoding='utf-8')
        dict = []
        for word in dictionary:
            word = word.strip('\n')
            dict.append(word)
        return dict
    
    def judgeodd(num):
        if (num % 2) == 0:
            return 'even'
        else:
            return 'odd'
    
    
    #注意,这里你要修改path路径。
    deny_word = open_dict(Dict = '否定词', path= r'/Users/apple888/PycharmProjects/Textming/')
    posdict = open_dict(Dict = 'positive', path= r'/Users/apple888/PycharmProjects/Textming/')
    negdict = open_dict(Dict = 'negative', path= r'/Users/apple888/PycharmProjects/Textming/')
    
    degree_word = open_dict(Dict = '程度级别词语', path= r'/Users/apple888/PycharmProjects/Textming/')
    mostdict = degree_word[degree_word.index('extreme')+1 : degree_word.index('very')]#权重4,即在情感词前乘以3
    verydict = degree_word[degree_word.index('very')+1 : degree_word.index('more')]#权重3
    moredict = degree_word[degree_word.index('more')+1 : degree_word.index('ish')]#权重2
    ishdict = degree_word[degree_word.index('ish')+1 : degree_word.index('last')]#权重0.5
    
    
    
    def sentiment_score_list(dataset):
        seg_sentence = dataset.split('。')
    
        count1 = []
        count2 = []
        for sen in seg_sentence: #循环遍历每一个评论
            segtmp = jieba.lcut(sen, cut_all=False)  #把句子进行分词,以列表的形式返回
            i = 0 #记录扫描到的词的位置
            a = 0 #记录情感词的位置
            poscount = 0 #积极词的第一次分值
            poscount2 = 0 #积极词反转后的分值
            poscount3 = 0 #积极词的最后分值(包括叹号的分值)
            negcount = 0
            negcount2 = 0
            negcount3 = 0
            for word in segtmp:
                if word in posdict:  # 判断词语是否是情感词
                    poscount += 1
                    c = 0
                    for w in segtmp[a:i]:  # 扫描情感词前的程度词
                        if w in mostdict:
                            poscount *= 4.0
                        elif w in verydict:
                            poscount *= 3.0
                        elif w in moredict:
                            poscount *= 2.0
                        elif w in ishdict:
                            poscount *= 0.5
                        elif w in deny_word:
                            c += 1
                    if judgeodd(c) == 'odd':  # 扫描情感词前的否定词数
                        poscount *= -1.0
                        poscount2 += poscount
                        poscount = 0
                        poscount3 = poscount + poscount2 + poscount3
                        poscount2 = 0
                    else:
                        poscount3 = poscount + poscount2 + poscount3
                        poscount = 0
                    a = i + 1  # 情感词的位置变化
    
                elif word in negdict:  # 消极情感的分析,与上面一致
                    negcount += 1
                    d = 0
                    for w in segtmp[a:i]:
                        if w in mostdict:
                            negcount *= 4.0
                        elif w in verydict:
                            negcount *= 3.0
                        elif w in moredict:
                            negcount *= 2.0
                        elif w in ishdict:
                            negcount *= 0.5
                        elif w in degree_word:
                            d += 1
                    if judgeodd(d) == 'odd':
                        negcount *= -1.0
                        negcount2 += negcount
                        negcount = 0
                        negcount3 = negcount + negcount2 + negcount3
                        negcount2 = 0
                    else:
                        negcount3 = negcount + negcount2 + negcount3
                        negcount = 0
                    a = i + 1
                elif word == '!' or word == '!':  ##判断句子是否有感叹号
                    for w2 in segtmp[::-1]:  # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
                        if w2 in posdict or negdict:
                            poscount3 += 2
                            negcount3 += 2
                            break
                i += 1 # 扫描词位置前移
    
    
                # 以下是防止出现负数的情况
                pos_count = 0
                neg_count = 0
                if poscount3 < 0 and negcount3 > 0:
                    neg_count += negcount3 - poscount3
                    pos_count = 0
                elif negcount3 < 0 and poscount3 > 0:
                    pos_count = poscount3 - negcount3
                    neg_count = 0
                elif poscount3 < 0 and negcount3 < 0:
                    neg_count = -poscount3
                    pos_count = -negcount3
                else:
                    pos_count = poscount3
                    neg_count = negcount3
    
                count1.append([pos_count, neg_count])
            count2.append(count1)
            count1 = []
    
        return count2
    
    def sentiment_score(senti_score_list):
        score = []
        for review in senti_score_list:
            score_array = np.array(review)
            Pos = np.sum(score_array[:, 0])
            Neg = np.sum(score_array[:, 1])
            AvgPos = np.mean(score_array[:, 0])
            AvgPos = float('%.1f'%AvgPos)
            AvgNeg = np.mean(score_array[:, 1])
            AvgNeg = float('%.1f'%AvgNeg)
            StdPos = np.std(score_array[:, 0])
            StdPos = float('%.1f'%StdPos)
            StdNeg = np.std(score_array[:, 1])
            StdNeg = float('%.1f'%StdNeg)
            score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg])
        return score
    
    
    
    data = '你就是个王八蛋,混账玩意!你们的手机真不好用!非常生气,我非常郁闷!!!!'
    data2= '我好开心啊,非常非常非常高兴!今天我得了一百分,我很兴奋开心,愉快,开心'
    
    print(sentiment_score(sentiment_score_list(data)))
    print(sentiment_score(sentiment_score_list(data2)))
    

    运行结果:

    [[78.0, 169.0, 3.1, 6.8, 3.1, 6.5]]
    [[327.0, 30.0, 14.9, 1.4, 22.5, 0.9]]

    从得分我们看到第一段话是消极的,第二段是积极的。(主要看Pos与Neg大小)

    运行代码及词典下载
    链接:http://link.zhihu.com/?target=https%3A//pan.baidu.com/s/1jIRoOxK
    密码:6wq4
    下载完代码,一定要注意代码中的path,修改成泥电脑中的文件路径,否则没法用。有什么问题可以给作者留言。

    欢迎关注作者公众号:大邓带你玩转python

    相关文章

      网友评论

          本文标题:用python实现文本情感分析

          本文链接:https://www.haomeiwen.com/subject/ewascftx.html