一、神马是高大上的MapReduce
MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算。对于大数据量的计算,通常采用的处理手法就是并行计算。但对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,它使得那些没有多有多少并行计算经验的开发人员也可以开发并行应用程序。这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛。
1.1 MapReduce是什么
Hadoop MapReduce是一个软件框架,基于该框架能够容易地编写应用程序,这些应用程序能够运行在由上千个商用机器组成的大集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集。这个定义里面有着这些关键词,一是软件框架,二是并行处理,三是可靠且容错,四是大规模集群,五是海量数据集。
因此,对于MapReduce,可以简洁地认为,它是一个软件框架,海量数据是它的“菜”,它在大规模集群上以一种可靠且容错的方式并行地“烹饪这道菜”。
1.2 MapReduce做什么
image简单地讲,MapReduce可以做大数据处理。所谓大数据处理,即以价值为导向,对大数据加工、挖掘和优化等各种处理。
MapReduce擅长处理大数据,它为什么具有这种能力呢?这可由MapReduce的设计思想发觉。MapReduce的思想就是“分而治之”。
(1)Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”来处理。“简单的任务”包含三层含义:一是数据或计算的规模相对原任务要大大缩小;二是就近计算原则,即任务会分配到存放着所需数据的节点上进行计算;三是这些小任务可以并行计算,彼此间几乎没有依赖关系。
(2)Reducer负责对map阶段的结果进行汇总。至于需要多少个Reducer,用户可以根据具体问题,通过在mapred-site.xml配置文件里设置参数mapred.reduce.tasks的值,缺省值为1。
一个比较形象的语言解释MapReduce:
We want to count all the books in the library. You count up shelf #1, I count up shelf #2. That’s map. The more people we get, the faster it goes.
我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。
Now we get together and add our individual counts. That’s reduce.
现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。
网友评论