美文网首页
第二讲-数组

第二讲-数组

作者: 小妍妍说 | 来源:发表于2018-10-15 12:13 被阅读0次

    一、数组的定义:

    ​ 数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。

    所以,数组具有可被“随机访问”的属性。

    二、数组的随机访问:

    ​ 我们拿一个长度为 10 的 int 类型的数组 int[] a = new int[10] 来举例。在这个图中,计算机给数组 a[10],分配了一块连续内存空间 1000~1039,其中,内存块的首地址为 base_address = 1000。

    1539569604029.png

    我们知道,计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:

    a[i]_address = base_address + i * data_type_size
    

    其中 data_type_size 表示数组中每个元素的大小。我们举的这个例子里,数组中存储的是 int 类型数据,所以 data_type_size 就为 4 个字节。

    三、数组的查找:

    ​ 当数组根据下标随机访问时,其时间复杂度为O(1),这是数组访问的优点。

    ​ 当数据使用二分查找时,其时间复杂度为O(logn),跟大部分数据结构一样。

    四、数组的插入和删除:

    ​ 数组为了保持内存数据的连续性,会导致插入、删除这两个操作比较低效。

    1)数组的插入

    假设数组的长度为 n,现在,如果我们需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,我们需要将第 k~n 这部分的元素都顺序地往后挪一位。那插入操作的时间复杂度是多少呢?试着分析一下:

    ​ 如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为 O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是 O(n)。 因为我们在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为 (1+2+…n)/n=O(n)。

    ​ 如果数组中的数据是有序的,我们在某个位置插入一个新的元素时,就必须按照刚才的方法搬移 k 之后的数据。但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数组插入到第 k 个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。

    2)数组的删除

    ​ 跟插入数据类似,如果我们要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。

    ​ 和插入类似,如果删除数组末尾的数据,则最好情况时间复杂度为 O(1);如果删除开头的数据,则最坏情况时间复杂度为 O(n);平均情况时间复杂度也为 O(n)。

    ​ 实际上,在某些特殊场景下,我们并不一定非得追求数组中数据的连续性。如果我们将多次删除操作集中在一起执行,删除的效率是不是会提高很多呢?

    ​ 来看例子。数组 a[10] 中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素。

    1539570911630.png

    ​ 为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。

    ​ 如果你了解 JVM,你会发现,这不就是 JVM 标记清除垃圾回收算法的核心思想吗?没错,数据结构和算法的魅力就在于此,很多时候我们并不是要去死记硬背某个数据结构或者算法,而是要学习它背后的思想和处理技巧,这些东西才是最有价值的。如果你细心留意,不管是在软件开发还是架构设计中,总能找到某些算法和数据结构的影子。

    五、数组的访问越界问题

    ​ C语言的一段代码如下:

    int main(int argc, char* argv[]){
        int i = 0;
        int arr[3] = {0};
        for(; i<=3; i++){
            arr[i] = 0;
            printf("hello world\n");
        }
        return 0;
    }
    

    你发现问题了吗?这段代码的运行结果并非是打印三行“hello word”,而是会无限打印“hello world”,这是为什么呢?

    ​ 因为,数组大小为 3,a[0],a[1],a[2],而我们的代码因为书写错误,导致 for 循环的结束条件错写为了 i=3 而非 i3,所以当 i=3 时,数组 a[3] 访问越界。

    ​ 我们知道,在 C 语言中,只要不是访问受限的内存,所有的内存空间都是可以自由访问的。根据我们前面讲的数组寻址公式,a[3] 也会被定位到某块不属于数组的内存地址上,而这个地址正好是存储变量 i 的内存地址,那么 a[3]=0 就相当于 i=0,所以就会导致代码无限循环。

    ​ 数组越界在 C 语言中是一种未决行为,并没有规定数组访问越界时编译器应该如何处理。因为,访问数组的本质就是访问一段连续内存,只要数组通过偏移计算得到的内存地址是可用的,那么程序就可能不会报任何错误。

    ​ 这种情况下,一般都会出现莫名其妙的逻辑错误,就像我们刚刚举的那个例子,debug 的难度非常的大。而且,很多计算机病毒也正是利用到了代码中的数组越界可以访问非法地址的漏洞,来攻击系统,所以写代码的时候一定要警惕数组越界。

    但并非所有的语言都像 C 一样,把数组越界检查的工作丢给程序员来做,像 Java 本身就会做越界检查,比如下面这几行 Java 代码,就会抛出 java.lang.ArrayIndexOutOfBoundsException。

    int[] a = new int[3];
    a[3] = 10;
    

    容器能否完全替代数组?

    ​ 针对数组类型,很多语言都提供了容器类,比如 Java 中的 ArrayList、C++ STL 中的 vector。在项目开发中,什么时候适合用数组,什么时候适合用容器呢?

    ​ 这里我拿 Java 语言来举例。如果你是 Java 工程师,几乎天天都在用 ArrayList,对它应该非常熟悉。那它与数组相比,到底有哪些优势呢?

    ​ 我个人觉得,ArrayList 最大的优势就是可以将很多数组操作的细节封装起来。比如前面提到的数组插入、删除数据时需要搬移其他数据等。另外,它还有一个优势,就是支持动态扩容。

    ​ 数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果我们申请了大小为 10 的数组,当第 11 个数据需要存储到数组中时,我们就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。

    ​ 如果使用 ArrayList,我们就完全不需要关心底层的扩容逻辑,ArrayList 已经帮我们实现好了。每次存储空间不够的时候,它都会将空间自动扩容为 1.5 倍大小。

    ​ 不过,这里需要注意一点,因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 ArrayList 的时候事先指定数据大小。

    比如我们要从数据库中取出 10000 条数据放入 ArrayList。我们看下面这几行代码,你会发现,相比之下,事先指定数据大小可以省掉很多次内存申请和数据搬移操作。

    ArrayList<User> users = new ArrayList(10000);
    for (int i = 0; i < 10000; ++i) {
      users.add(xxx);
    }
    

    作为高级语言编程者,是不是数组就无用武之地了呢?当然不是,有些时候,用数组会更合适些,我总结了几点自己的经验。

    1.​ Java ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。

    2.​ 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组。

    1. 当要表示多维数组时,用数组往往会更加直观。比如 Object array;而用容器的话则需要这样定义:ArrayListArrayList array。

      总结,对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。

    小tips:

    一、数组为什么总是从0开始编号?

    老师:1,C语言是从0开始编号,后续发展的语言如java等沿袭该方法,减低程序员的学习成本。

    ​2,数组的内存地址分配方法:

    a[k]_address = base_address + k * type_size
    

    如果从1开始编号,还计算方法则为:

    a[k]_address = base_address + (k-1)*type_size
    

    对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。

    ​ 数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1 开始。

    二、本文中第一段代码为什么造成了死循环,为什么越界的那个地址正好是存储变量 i 的内存地址?

    同学一:参考函数调用的栈桢结构细节(操作系统或计算机体系结构的教材应该会讲到)。

    ​ 函数体内的局部变量存在栈上,且是连续压栈。在Linux进程的内存布局中,栈区在高地址空间,从高向低增长。变量i和arr在相邻地址,且i比arr的地址大,所以arr越界正好访问到i。当然,前提是i和arr元素同类型,否则那段代码仍是未决行为。

    同学二:例子中死循环的问题跟编译器分配内存和字节对齐有关 数组3个元素 加上一个变量a 。4个整数刚好能满足8字节对齐 所以i的地址恰好跟着a2后面 导致死循环。。如果数组本身有4个元素 则这里不会出现死循环。。因为编译器64位操作系统下 默认会进行8字节对齐 变量i的地址就不紧跟着数组后面了。

    同学三: C语言变量的内存申请可以看做是地址按照从大到小连续申请的,因为i在arr前面申请,所以arr[3]的地址和i的地址相同。

    老师:1. 不同的语言对数组访问越界的处理方式不同,即便是同一种语言,不同的编译器处理的方式也不同。至于你熟悉的语言是怎么处理的,请行百度。

    1. C语言中,数组访问越界的处理是未决。并不一定是错,有同学做实验说没问题,那并不代表就是正确的。

    2. 我觉得那个例子,栈是由高到低位增长的,所以,i和数组的数据从高位地址到低位地址依次是:i, a[2], a[1], a[0]。a[3]通过寻址公式,计算得到地址正好是i的存储地址,所以a[3]=0,就相当于i=0.

    3. 大家有不懂的多看看留言,留言区还是有很多大牛的!我可能有时候回复的不及时,或者同样的问题只回复一个同学!

    三、二维数组的寻址公式是什么呢?
    a[i][j]_address = base_address + (i * n+j)*data_type_size
    
    四、标记清除实现过程如何?

    同学一:标记-整理垃圾回收算法。标记-清除算法在垃圾收集时会先标记出需要回收的对象,标记完成后统一回收所有被标记的对象。清除之后会产生大量不连续的内存碎片。标记-整理垃圾回收算法在标记完成之后让所有存活的对象都向一端移动,然后直接清理掉边界以外的内存。

    相关文章

      网友评论

          本文标题:第二讲-数组

          本文链接:https://www.haomeiwen.com/subject/ewhfzftx.html