美文网首页
一口气说出 9种 分布式ID生成方式,面试官有点懵了

一口气说出 9种 分布式ID生成方式,面试官有点懵了

作者: 即将秃头的Java程序员 | 来源:发表于2020-02-16 17:22 被阅读0次

    前两天有个朋友给我发信息吐槽最近面试:“四哥,年前我在公司受点委屈一冲动就裸辞了,然后现在疫情严重两个多月还没找到工作,接了几个视频面试也都没下文。好多面试官问完一个问题,紧接着说还会其他解决方法吗?能干活解决bug不就行了吗?那还得会多少种方法?

    面试官应该是对应聘者的回答不太满意,他想听到一个他认为最优的解决方案,其实这无可厚非。同样一个bug,能用一行代码解决问题的人和用十行代码解决问题的人,你会选哪个入职?显而易见的事情!所以看待问题还是要从多个角度出发,每种方法都有各自的利弊。

    一、为什么要用分布式ID?

    在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?

    1、什么是分布式ID?

    拿MySQL数据库举个栗子:

    在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个MySQL主从同步读写分离也能对付。

    但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一ID来标识一条数据,数据库的自增ID显然不能满足需求;特别一点的如订单、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。那么这个全局唯一ID就叫分布式ID。

    2、那么分布式ID需要满足那些条件?

    全局唯一:必须保证ID是全局性唯一的,基本要求

    高性能:高可用低延时,ID生成响应要块,否则反倒会成为业务瓶颈

    高可用:100%的可用性是骗人的,但是也要无限接近于100%的可用性

    好接入:要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单

    趋势递增:最好趋势递增,这个要求就得看具体业务场景了,一般不严格要求

    二、 分布式ID都有哪些生成方式?

    今天主要分析一下以下9种,分布式ID生成器方式以及优缺点:

    UUID

    数据库自增ID

    数据库多主模式

    号段模式

    Redis

    雪花算法(SnowFlake)

    滴滴出品(TinyID)

    百度 (Uidgenerator)

    美团(Leaf)

    那么它们都是如何实现?以及各自有什么优缺点?我们往下看

    1、基于UUID

    在Java的世界里,想要得到一个具有唯一性的ID,首先被想到可能就是UUID,毕竟它有着全球唯一的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不推荐!

    public static void main(String[] args) {

          String uuid = UUID.randomUUID().toString().replaceAll("-","");

          System.out.println(uuid);

    }

    UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID。

    优点:

    生成足够简单,本地生成无网络消耗,具有唯一性

    缺点:

    无序的字符串,不具备趋势自增特性

    没有具体的业务含义

    长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。

    2、基于数据库自增ID

    基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:

    CREATE DATABASE `SEQ_ID`;

    CREATE TABLE SEQID.SEQUENCE_ID (

        id bigint(20) unsigned NOT NULL auto_increment,

        value char(10) NOT NULL default '',

        PRIMARY KEY (id),

    ) ENGINE=MyISAM;

    insert into SEQUENCE_ID(value) VALUES ('values');

    当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!

    优点:

    实现简单,ID单调自增,数值类型查询速度快

    缺点:

    DB单点存在宕机风险,无法扛住高并发场景

    3、基于数据库集群模式

    前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。

    那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?

    解决方案:设置起始值和自增步长

    MySQL_1 配置:

    set @@auto_increment_offset = 1; -- 起始值

    set @@auto_increment_increment = 2;  -- 步长

    MySQL_2 配置:

    set @@auto_increment_offset = 2;    -- 起始值

    set @@auto_increment_increment = 2;  -- 步长

    这样两个MySQL实例的自增ID分别就是:

    1、3、5、7、9 2、4、6、8、10

    那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。

    从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。

    增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改

    优点:

    解决DB单点问题

    缺点:

    不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。

    4、基于数据库的号段模式

    号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:

    CREATE TABLE id_generator (

      id int(10) NOT NULL,

      max_id bigint(20) NOT NULL COMMENT '当前最大id',

      step int(20) NOT NULL COMMENT '号段的布长',

      biz_type int(20) NOT NULL COMMENT '业务类型',

      version int(20) NOT NULL COMMENT '版本号',

      PRIMARY KEY (`id`)

    )

    biz_type :代表不同业务类型

    max_id :当前最大的可用id

    step :代表号段的长度

    version :是一个乐观锁,每次都更新version,保证并发时数据的正确性

    等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

    update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX

    由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。

    5、基于Redis模式

    Redis也同样可以实现,原理就是利用redis的incr命令实现ID的原子性自增。

    127.0.0.1:6379> set seq_id 1 // 初始化自增ID为1

    OK

    127.0.0.1:6379> incr seq_id      // 增加1,并返回递增后的数值

    (integer) 2

    用redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDB和AOF

    RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。

    AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis重启恢复的数据时间过长。

    6、基于雪花算法(Snowflake)模式

    雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。

    Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。

    Snowflake ID组成结构:正数位(占1比特)+时间戳(占41比特)+机器ID(占5比特)+数据中心(占5比特)+自增值(占12比特),总共64比特组成的一个Long类型。

    第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。

    时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年

    工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。

    序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

    根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。

    Java版本的Snowflake算法实现:

    /**

    * Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL

    *

    * https://github.com/beyondfengyu/SnowFlake

    */

    public class SnowFlakeShortUrl {

        /**

        * 起始的时间戳

        */

        private final static long START_TIMESTAMP = 1480166465631L;

        /**

        * 每一部分占用的位数

        */

        private final static long SEQUENCE_BIT = 12;  //序列号占用的位数

        private final static long MACHINE_BIT = 5;    //机器标识占用的位数

        private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数

        /**

        * 每一部分的最大值

        */

        private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

        private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);

        private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);

        /**

        * 每一部分向左的位移

        */

        private final static long MACHINE_LEFT = SEQUENCE_BIT;

        private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;

        private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;

        private long dataCenterId;  //数据中心

        private long machineId;    //机器标识

        private long sequence = 0L; //序列号

        private long lastTimeStamp = -1L;  //上一次时间戳

        private long getNextMill() {

            long mill = getNewTimeStamp();

            while (mill <= lastTimeStamp) {

                mill = getNewTimeStamp();

            }

            return mill;

        }

        private long getNewTimeStamp() {

            return System.currentTimeMillis();

        }

        /**

        * 根据指定的数据中心ID和机器标志ID生成指定的序列号

        *

        * @param dataCenterId 数据中心ID

        * @param machineId    机器标志ID

        */

        public SnowFlakeShortUrl(long dataCenterId, long machineId) {

            if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {

                throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");

            }

            if (machineId > MAX_MACHINE_NUM || machineId < 0) {

                throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");

            }

            this.dataCenterId = dataCenterId;

            this.machineId = machineId;

        }

        /**

        * 产生下一个ID

        *

        * @return

        */

        public synchronized long nextId() {

            long currTimeStamp = getNewTimeStamp();

            if (currTimeStamp < lastTimeStamp) {

                throw new RuntimeException("Clock moved backwards.  Refusing to generate id");

            }

            if (currTimeStamp == lastTimeStamp) {

                //相同毫秒内,序列号自增

                sequence = (sequence + 1) & MAX_SEQUENCE;

                //同一毫秒的序列数已经达到最大

                if (sequence == 0L) {

                    currTimeStamp = getNextMill();

                }

            } else {

                //不同毫秒内,序列号置为0

                sequence = 0L;

            }

            lastTimeStamp = currTimeStamp;

            return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分

                    | dataCenterId << DATA_CENTER_LEFT      //数据中心部分

                    | machineId << MACHINE_LEFT            //机器标识部分

                    | sequence;                            //序列号部分

        }

        public static void main(String[] args) {

            SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);

            for (int i = 0; i < (1 << 4); i++) {

                //10进制

                System.out.println(snowFlake.nextId());

            }

        }

    }

    7、百度(uid-generator)

    uid-generator是由百度技术部开发,项目GitHub地址 github.com/baidu/uid-g…

    uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。

    uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。

    对于uid-generator ID组成结构:

    workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。

    8、美团(Leaf)

    Leaf由美团开发,github地址:github.com/Meituan-Dia…

    Leaf同时支持号段模式和snowflake算法模式,可以切换使用。

    号段模式

    先导入源码 github.com/Meituan-Dia… ,在建一张表leaf_alloc

    DROP TABLE IF EXISTS `leaf_alloc`;

    CREATE TABLE `leaf_alloc` (

      `biz_tag` varchar(128)  NOT NULL DEFAULT '' COMMENT '业务key',

      `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',

      `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',

      `description` varchar(256)  DEFAULT NULL COMMENT '业务key的描述',

      `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',

      PRIMARY KEY (`biz_tag`)

    ) ENGINE=InnoDB;

    然后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式

    eaf.name=com.sankuai.leaf.opensource.test

    leaf.segment.enable=true

    leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8

    leaf.jdbc.username=root

    leaf.jdbc.password=root

    leaf.snowflake.enable=false

    #leaf.snowflake.zk.address=

    #leaf.snowflake.port=

    启动leaf-server 模块的 LeafServerApplication项目就跑起来了

    号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test

    监控号段模式:http://localhost:8080/cache

    snowflake模式

    Leaf的snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

    leaf.snowflake.enable=true

    leaf.snowflake.zk.address=127.0.0.1

    leaf.snowflake.port=2181

    9、滴滴(Tinyid)

    Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]

    Tinyid提供http和tinyid-client两种方式接入

    Http方式接入

    (1)导入Tinyid源码:

    git clonegithub.com/didi/tinyid…

    (2)创建数据表:

    CREATE TABLE `tiny_id_info` (

      `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',

      `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',

      `begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',

      `max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',

      `step` int(11) DEFAULT '0' COMMENT '步长',

      `delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',

      `remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',

      `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',

      `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',

      `version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',

      PRIMARY KEY (`id`),

      UNIQUE KEY `uniq_biz_type` (`biz_type`)

    ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';

    CREATE TABLE `tiny_id_token` (

      `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',

      `token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',

      `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',

      `remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',

      `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',

      `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',

      PRIMARY KEY (`id`)

    ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';

    INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)

    VALUES

    (1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);

    INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)

    VALUES

    (2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);

    INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)

    VALUES

    (1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

    INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)

    VALUES

    (2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

    (3)配置数据库:

    datasource.tinyid.names=primary

    datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver

    datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8

    datasource.tinyid.primary.username=root

    datasource.tinyid.primary.password=123456

    (4)启动tinyid-server后测试

    获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c'

    返回结果: 3

    批量获取分布式自增ID:

    http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10'

    返回结果:  4,5,6,7,8,9,10,11,12,13

    Java客户端方式接入

    重复Http方式的(2)(3)操作

    引入依赖

    <dependency>

                <groupId>com.xiaoju.uemc.tinyid</groupId>

                <artifactId>tinyid-client</artifactId>

                <version>${tinyid.version}</version>

            </dependency>

    配置文件

    tinyid.server =localhost:9999

    tinyid.token =0f673adf80504e2eaa552f5d791b644c

    test 、tinyid.token是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token表示可访问的业务类型

    // 获取单个分布式自增ID

    Long id =  TinyId . nextId( " test " );

    // 按需批量分布式自增ID

    List< Long > ids =  TinyId . nextId( " test " , 10 );

    总结

    本文只是简单介绍一下每种分布式ID生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。

    今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞👍哦

    您的认可才是我写作的动力!

    作者;程序员内点事

    出处:https://juejin.im/post/5e48a9af6fb9a07cc200c203

    相关文章

      网友评论

          本文标题:一口气说出 9种 分布式ID生成方式,面试官有点懵了

          本文链接:https://www.haomeiwen.com/subject/exhmfhtx.html