美文网首页
图-最短路径-弗洛伊德算法

图-最短路径-弗洛伊德算法

作者: 格林哈 | 来源:发表于2020-03-09 12:36 被阅读0次

    思路

    • 通过中间点修正矩阵

    场景

    • 所有顶点至所有顶点的最短路径问题

    案例

    代码

    package com.map;
    
    import lombok.Data;
    
    import java.util.Arrays;
    
    /**
     * ShortestPath_FLOYD class
     */
    @Data
    public class ShortestPath_FLOYD {
        private int[][] P; // 路径下标
        private int[][] D; // 带权长度
    
        public final static int MAX = Integer.MAX_VALUE / 2;
    
    
    
        public  void FLOYD(int map[][]) {
            int num = map.length;
            P = new int[num][num];
            D = new int[num][num];
            for(int v = 0; v < num; v ++) {
                for(int w = 0; w < num; w ++) {
                    D[v][w] = map[v][w];
                    P[v][w] = w;
                }
            }
            for(int k = 0; k < num; k ++) {
                for(int v = 0; v < num; v ++) {
                    for(int w = 0; w < num; w ++) {
                        if(D[v][w] > D[v][k] + D[k][w]) {
                            D[v][w] = D[v][k] + D[k][w];
                            P[v][w] = P[v][k];
                        }
                    }
                }
            }
    
        }
    
    
        public static void main(String[] args) {
            // 模式测试数据
            int[][] data = new int[16][3];
            data[0][0] = 0; data[0][1] = 1; data[0][2] = 1;
            data[1][0] = 0; data[1][1] = 2; data[1][2] = 5;
            data[2][0] = 1; data[2][1] = 2; data[2][2] = 3;
            data[3][0] = 1; data[3][1] = 4; data[3][2] = 5;
            data[4][0] = 1; data[4][1] = 3; data[4][2] = 7;
            data[5][0] = 2; data[5][1] = 5; data[5][2] = 7;
            data[12][0] = 2; data[12][1] = 4; data[12][2] = 1;
            data[6][0] = 3; data[6][1] = 4; data[6][2] = 2;
            data[7][0] = 4; data[7][1] = 5; data[7][2] = 3;
            data[8][0] = 3; data[8][1] = 6; data[8][2] = 3;
            data[9][0] = 4; data[9][1] = 6; data[9][2] = 6;
            data[10][0] = 4; data[10][1] = 7; data[10][2] = 9;
            data[13][0] = 5; data[13][1] = 7; data[13][2] = 5;
            data[11][0] = 6; data[11][1] = 7; data[11][2] = 2;
            data[14][0] = 6; data[14][1] = 8; data[14][2] = 7;
            data[15][0] = 7; data[15][1] = 8; data[15][2] = 4;
    
            // 初始化邻接矩阵
            int[][] map = new int[9][9];
            int num = map.length;
            for(int i = 0; i < num  ; i ++) {
                for (int j = 0; j <num ; j ++) {
                    if(i == j) {
                        map[i][j] = 0;
                    } else {
                        map[i][j] = MAX;
                    }
                }
            }
    
            for(int i = 0; i < 16; i ++) {
                map[data[i][0]][data[i][1]] = data[i][2];
                map[data[i][1]][data[i][0]] = data[i][2];
    
            }
            System.out.println("邻接矩阵:");
            for(int i = 0; i < num; i ++ ) {
                System.out.println(Arrays.toString(map[i]));
            }
    
    
            ShortestPath_FLOYD shortestPath_floyd = new ShortestPath_FLOYD();
            shortestPath_floyd.FLOYD(map);
    
            System.out.println(" 最短路径权值数组:");
            for(int i = 0; i < num; i ++) {
                System.out.println(Arrays.toString(shortestPath_floyd.getD()[i] ));
            }
            System.out.println(" 前驱节点数组:" );
            for(int i = 0; i < num; i ++) {
                System.out.println(Arrays.toString(shortestPath_floyd.getP()[i] ));
            }
    
        }
    }
    
    

    控制台输出

    
    邻接矩阵:
    [0, 1, 5, 1073741823, 1073741823, 1073741823, 1073741823, 1073741823, 1073741823]
    [1, 0, 3, 7, 5, 1073741823, 1073741823, 1073741823, 1073741823]
    [5, 3, 0, 1073741823, 1, 7, 1073741823, 1073741823, 1073741823]
    [1073741823, 7, 1073741823, 0, 2, 1073741823, 3, 1073741823, 1073741823]
    [1073741823, 5, 1, 2, 0, 3, 6, 9, 1073741823]
    [1073741823, 1073741823, 7, 1073741823, 3, 0, 1073741823, 5, 1073741823]
    [1073741823, 1073741823, 1073741823, 3, 6, 1073741823, 0, 2, 7]
    [1073741823, 1073741823, 1073741823, 1073741823, 9, 5, 2, 0, 4]
    [1073741823, 1073741823, 1073741823, 1073741823, 1073741823, 1073741823, 7, 4, 0]
     最短路径权值数组:
    [0, 1, 4, 7, 5, 8, 10, 12, 16]
    [1, 0, 3, 6, 4, 7, 9, 11, 15]
    [4, 3, 0, 3, 1, 4, 6, 8, 12]
    [7, 6, 3, 0, 2, 5, 3, 5, 9]
    [5, 4, 1, 2, 0, 3, 5, 7, 11]
    [8, 7, 4, 5, 3, 0, 7, 5, 9]
    [10, 9, 6, 3, 5, 7, 0, 2, 6]
    [12, 11, 8, 5, 7, 5, 2, 0, 4]
    [16, 15, 12, 9, 11, 9, 6, 4, 0]
     前驱节点数组:
    [0, 1, 1, 1, 1, 1, 1, 1, 1]
    [0, 1, 2, 2, 2, 2, 2, 2, 2]
    [1, 1, 2, 4, 4, 4, 4, 4, 4]
    [4, 4, 4, 3, 4, 4, 6, 6, 6]
    [2, 2, 2, 3, 4, 5, 3, 3, 3]
    [4, 4, 4, 4, 4, 5, 7, 7, 7]
    [3, 3, 3, 3, 3, 7, 6, 7, 7]
    [6, 6, 6, 6, 6, 5, 6, 7, 8]
    [7, 7, 7, 7, 7, 7, 7, 7, 8]
    
    Process finished with exit code 0
    
    

    如何通过P 得到具体的最短路径

    v0->v8 为例
    P[v0][v8] = 1  路径为:v0->v1
    P[v1][v8] = 2  路径为:v0-v1->v2
    ....
    v0->v1->v2->v4->v3->v6->v7->v8
    
    
    
    

    时间复杂度

    -O(n3)

    相关文章

      网友评论

          本文标题:图-最短路径-弗洛伊德算法

          本文链接:https://www.haomeiwen.com/subject/extpdhtx.html