#ifndef _PTHREAD_H_
#define _PTHREAD_H_
#include <limits.h>
#include <bits/pthread_types.h>
#include <sched.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <time.h>
__BEGIN_DECLS
enum {
PTHREAD_MUTEX_NORMAL = 0,
PTHREAD_MUTEX_RECURSIVE = 1,
PTHREAD_MUTEX_ERRORCHECK = 2,
PTHREAD_MUTEX_ERRORCHECK_NP = PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE_NP = PTHREAD_MUTEX_RECURSIVE,
PTHREAD_MUTEX_DEFAULT = PTHREAD_MUTEX_NORMAL
};
#define PTHREAD_MUTEX_INITIALIZER { { ((PTHREAD_MUTEX_NORMAL & 3) << 14) } }
#define PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP { { ((PTHREAD_MUTEX_RECURSIVE & 3) << 14) } }
#define PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP { { ((PTHREAD_MUTEX_ERRORCHECK & 3) << 14) } }
#define PTHREAD_COND_INITIALIZER { { 0 } }
#define PTHREAD_RWLOCK_INITIALIZER { { 0 } }
enum {
PTHREAD_RWLOCK_PREFER_READER_NP = 0,
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP = 1,
};
#define PTHREAD_ONCE_INIT 0
#if __ANDROID_API__ >= __ANDROID_API_N__
#define PTHREAD_BARRIER_SERIAL_THREAD -1
#endif
#if defined(__LP64__)
#define PTHREAD_STACK_MIN (4 * PAGE_SIZE)
#else
#define PTHREAD_STACK_MIN (2 * PAGE_SIZE)
#endif
#define PTHREAD_CREATE_DETACHED 0x00000001
#define PTHREAD_CREATE_JOINABLE 0x00000000
#define PTHREAD_PROCESS_PRIVATE 0
#define PTHREAD_PROCESS_SHARED 1
#define PTHREAD_SCOPE_SYSTEM 0
#define PTHREAD_SCOPE_PROCESS 1
#if __ANDROID_API__ >= 12
int pthread_atfork(void (*__prepare)(void), void (*__parent)(void), void (*__child)(void)) __INTRODUCED_IN(12);
#endif /* __ANDROID_API__ >= 12 */
//删除线程属性
int pthread_attr_destroy(pthread_attr_t* __attr);
//以下是获取线程相关的属性
//线程的分离状态
int pthread_attr_getdetachstate(const pthread_attr_t* __attr, int* __state);
// 线程栈末尾的警戒缓冲区大小
int pthread_attr_getguardsize(const pthread_attr_t* __attr, size_t* __size);
// 线程的调度参数
int pthread_attr_getschedparam(const pthread_attr_t* __attr, struct sched_param* __param);
//线程调度策略
int pthread_attr_getschedpolicy(const pthread_attr_t* __attr, int* __policy);
// 线程的作用域
int pthread_attr_getscope(const pthread_attr_t* __attr, int* __scope);
//线程栈的位置
int pthread_attr_getstack(const pthread_attr_t* __attr, void** __addr, size_t* __size);
// 线程栈的大小
int pthread_attr_getstacksize(const pthread_attr_t* __attr, size_t* __size);
//初始化线程属性
int pthread_attr_init(pthread_attr_t* __attr);
//设置线程相关属性
int pthread_attr_setdetachstate(pthread_attr_t* __attr, int __state);
int pthread_attr_setguardsize(pthread_attr_t* __attr, size_t __size);
int pthread_attr_setschedparam(pthread_attr_t* __attr, const struct sched_param* __param);
int pthread_attr_setschedpolicy(pthread_attr_t* __attr, int __policy);
int pthread_attr_setscope(pthread_attr_t* __attr, int __scope);
int pthread_attr_setstack(pthread_attr_t* __attr, void* __addr, size_t __size);
int pthread_attr_setstacksize(pthread_attr_t* __addr, size_t __size);
//条件变量 销毁
int pthread_condattr_destroy(pthread_condattr_t* __attr);
#if __ANDROID_API__ >= 21
int pthread_condattr_getclock(const pthread_condattr_t* __attr, clockid_t* __clock) __INTRODUCED_IN(21);
#endif /* __ANDROID_API__ >= 21 */
int pthread_condattr_getpshared(const pthread_condattr_t* __attr, int* __shared)
//条件变量初始化
int pthread_condattr_init(pthread_condattr_t* __attr);
#if __ANDROID_API__ >= 21
int pthread_condattr_setclock(pthread_condattr_t* __attr, clockid_t __clock) __INTRODUCED_IN(21);
#endif /* __ANDROID_API__ >= 21 */
int pthread_condattr_setpshared(pthread_condattr_t* __attr, int __shared);
//多个线程处于堵塞等待状态,必须使用此函数唤醒
int pthread_cond_broadcast(pthread_cond_t* __cond);
//销毁
int pthread_cond_destroy(pthread_cond_t* __cond);
//初始化
int pthread_cond_init(pthread_cond_t* __cond, const pthread_condattr_t* __attr);
// 发信号 给正在等待条件变量的另一个线程
int pthread_cond_signal(pthread_cond_t* __cond);
//阻塞调用线程
int pthread_cond_timedwait(pthread_cond_t* __cond, pthread_mutex_t* __mutex, const struct timespec* __timeout);
int pthread_cond_wait(pthread_cond_t* __cond, pthread_mutex_t* __mutex);
/**
*
* @param __pthread_ptr 新线程的标识符,为一个long
* @param __attr 设置新线程的属性,传递NULL表示设置为默认线程属性
* @param __start_routine 指定新线程运行时函数 start_routine返回时,这个线程就退出了
* @return 成功返回0, 失败返回错误号
*/
int pthread_create(pthread_t* __pthread_ptr, pthread_attr_t const* __attr, void* (*__start_routine)(void*), void*);
//1.在任何一个时间点上,线程是可结合的(joinable)或者是分离的(detached)。
//
//2.一个可结合的线程能够被其他线程收回其资源和杀死。在被其他线程回收之前,它的存储器资源
//(例如栈)是不释放的。(默认情况下线程的创建都是可结合的)
//
//3.一个分离的线程是不能被其他线程回收或杀死的,它的存储器 资源在它终止时由系统自动释放。
//
//4. 如果一个可结合线程结束运行但没有被join,会导致部分资源没有被回收,
// 所以创建线程者应该调用pthread_join来等待线程运行结束,并可得到线程的退出代码,回收其资源。
/**
* 非阻塞 立即返回 这将该子线程的状态设置为分离的(detached)
* ,该线程运行结束后会自动释放所有资源。
* @param __pthread
* @return
*/
int pthread_detach(pthread_t __pthread);
// 线程终止自己
/**
* @param __return_value 是void *类型,其它线程可以调用pthread_join获得这个指针
* 通过retval参数向线程的回收者传递其退出信息。它执行之后不会返回到调用者,且永远不会失败。
* 需要注意,pthread_exit或者return返回的指针所指向的内存单元必须是全局的或者是由malloc分 配的,
* 不能在线程函数的栈上分配,因为当其它线程得到这个返回指针时线程函数已经退出了。
*/
void pthread_exit(void* __return_value) __noreturn;
// 用于比较两个pthread_t是否相等
int pthread_equal(pthread_t __lhs, pthread_t __rhs);
int pthread_getattr_np(pthread_t __pthread, pthread_attr_t* __attr);
int pthread_getcpuclockid(pthread_t __pthread, clockid_t* __clock);
int pthread_getschedparam(pthread_t __pthread, int* __policy, struct sched_param* __param);
void* pthread_getspecific(pthread_key_t __key);
#if __ANDROID_API__ >= 21
pid_t pthread_gettid_np(pthread_t __pthread) __INTRODUCED_IN(21);
#endif /* __ANDROID_API__ >= 21 */
/**
* 线程等待
* 调用该函数的线程将挂起等待,直到id为__pthread的线程终止。
* @param __pthread
* @param __return_value_ptr
* @return
*/
int pthread_join(pthread_t __pthread, void** __return_value_ptr);
int pthread_key_create(pthread_key_t* __key_ptr, void (*__key_destructor)(void*));
int pthread_key_delete(pthread_key_t __key);
int pthread_mutexattr_destroy(pthread_mutexattr_t* __attr);
int pthread_mutexattr_getpshared(const pthread_mutexattr_t* __attr, int* __shared);
int pthread_mutexattr_gettype(const pthread_mutexattr_t* __attr, int* __type);
int pthread_mutexattr_init(pthread_mutexattr_t* __attr);
int pthread_mutexattr_setpshared(pthread_mutexattr_t* __attr, int __shared);
int pthread_mutexattr_settype(pthread_mutexattr_t* __attr, int __type);
//销毁互斥量
int pthread_mutex_destroy(pthread_mutex_t* __mutex);
// 创建互斥量
int pthread_mutex_init(pthread_mutex_t* __mutex, const pthread_mutexattr_t* __attr);
//锁住互斥量
int pthread_mutex_lock(pthread_mutex_t* __mutex);
#if __ANDROID_API__ >= 21
int pthread_mutex_timedlock(pthread_mutex_t* __mutex, const struct timespec* __timeout)
__INTRODUCED_IN(21);
#endif /* __ANDROID_API__ >= 21 */
//非阻塞锁住互斥量
int pthread_mutex_trylock(pthread_mutex_t* __mutex);
// 解锁互斥量
int pthread_mutex_unlock(pthread_mutex_t* __mutex);
#if __ANDROID_API__ < 21
/*
* Cruft for supporting old API levels. Pre-L we didn't have the proper POSIX
* APIs for things, but instead had some locally grown, artisan equivalents.
* Keep exposing the old prototypes on old API levels so we don't regress
* functionality.
*
* See the following bugs:
* * https://github.com/android-ndk/ndk/issues/420
* * https://github.com/android-ndk/ndk/issues/423
* * https://stackoverflow.com/q/44580542/632035
*/
int pthread_mutex_lock_timeout_np(pthread_mutex_t* __mutex, unsigned __timeout_ms);
int pthread_cond_timeout_np(pthread_cond_t* __cond, pthread_mutex_t* __mutex, unsigned __timeout_ms);
int pthread_cond_timedwait_monotonic_np(pthread_cond_t* __cond, pthread_mutex_t* __mutex, const struct timespec* __timeout);
int pthread_cond_timedwait_relative_np(pthread_cond_t* __cond, pthread_mutex_t* __mutex, const struct timespec* __relative_timeout);
#endif
int pthread_once(pthread_once_t* __once, void (*__init_routine)(void));
int pthread_rwlockattr_init(pthread_rwlockattr_t* __attr);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t* __attr);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t* __attr, int* __shared);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t* __attr, int __shared);
#if __ANDROID_API__ >= 23
int pthread_rwlockattr_getkind_np(const pthread_rwlockattr_t* __attr, int* __kind)
__INTRODUCED_IN(23);
int pthread_rwlockattr_setkind_np(pthread_rwlockattr_t* __attr, int __kind) __INTRODUCED_IN(23);
#endif /* __ANDROID_API__ >= 23 */
//读写锁 同一时间,可以有多个线程获取到 读锁, 但只有一个线程可以获取到 写锁.
//销毁
int pthread_rwlock_destroy(pthread_rwlock_t* __rwlock);
// 创建
int pthread_rwlock_init(pthread_rwlock_t* __rwlock, const pthread_rwlockattr_t* __attr);
// 获取读锁
int pthread_rwlock_rdlock(pthread_rwlock_t* __rwlock);
// 获取 读锁 设置了读锁的时间
int pthread_rwlock_timedrdlock(pthread_rwlock_t* __rwlock, const struct timespec* __timeout);
// 获取 写锁 设置了写锁的时间
int pthread_rwlock_timedwrlock(pthread_rwlock_t* __rwlock, const struct timespec* __timeout);
// 非阻塞获取读锁
int pthread_rwlock_tryrdlock(pthread_rwlock_t* __rwlock);
//非阻塞获取写锁
int pthread_rwlock_trywrlock(pthread_rwlock_t* __rwlock);
//释放锁
int pthread_rwlock_unlock(pthread_rwlock_t* __rwlock);
//获取写锁
int pthread_rwlock_wrlock(pthread_rwlock_t* __rwlock);
#if __ANDROID_API__ >= __ANDROID_API_N__
int pthread_barrierattr_init(pthread_barrierattr_t* __attr) __INTRODUCED_IN(24);
int pthread_barrierattr_destroy(pthread_barrierattr_t* __attr) __INTRODUCED_IN(24);
int pthread_barrierattr_getpshared(const pthread_barrierattr_t* __attr, int* __shared) __INTRODUCED_IN(24);
int pthread_barrierattr_setpshared(pthread_barrierattr_t* __attr, int __shared) __INTRODUCED_IN(24);
#endif
#if __ANDROID_API__ >= __ANDROID_API_N__
int pthread_barrier_init(pthread_barrier_t* __barrier, const pthread_barrierattr_t* __attr, unsigned __count) __INTRODUCED_IN(24);
int pthread_barrier_destroy(pthread_barrier_t* __barrier) __INTRODUCED_IN(24);
int pthread_barrier_wait(pthread_barrier_t* __barrier) __INTRODUCED_IN(24);
#endif
#if __ANDROID_API__ >= __ANDROID_API_N__
int pthread_spin_destroy(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
int pthread_spin_init(pthread_spinlock_t* __spinlock, int __shared) __INTRODUCED_IN(24);
int pthread_spin_lock(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
int pthread_spin_trylock(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
int pthread_spin_unlock(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
#endif
//函数用于获得本线程的pthread_t
pthread_t pthread_self(void) __attribute_const__;
#if defined(__USE_GNU)
#if __ANDROID_API__ >= 26
int pthread_getname_np(pthread_t __pthread, char* __buf, size_t __n) __INTRODUCED_IN(26);
#endif /* __ANDROID_API__ >= 26 */
#endif
/* TODO: this should be __USE_GNU too. */
int pthread_setname_np(pthread_t __pthread, const char* __name);
int pthread_setschedparam(pthread_t __pthread, int __policy, const struct sched_param* __param);
#if __ANDROID_API__ >= __ANDROID_API_FUTURE__
int pthread_setschedprio(pthread_t __pthread, int __priority) __INTRODUCED_IN_FUTURE;
#endif /* __ANDROID_API__ >= __ANDROID_API_FUTURE__ */
int pthread_setspecific(pthread_key_t __key, const void* __value);
typedef void (*__pthread_cleanup_func_t)(void*);
typedef struct __pthread_cleanup_t {
struct __pthread_cleanup_t* __cleanup_prev;
__pthread_cleanup_func_t __cleanup_routine;
void* __cleanup_arg;
} __pthread_cleanup_t;
// 注册线程结束时 自动调用的清理函数 注册的函数安装顺序压入一个栈内,调用的时候就一个个的出栈。
void __pthread_cleanup_push(__pthread_cleanup_t* c, __pthread_cleanup_func_t, void*);
// 调用栈顶函数
void __pthread_cleanup_pop(__pthread_cleanup_t*, int);
/* Believe or not, the definitions of pthread_cleanup_push and
* pthread_cleanup_pop below are correct. Posix states that these
* can be implemented as macros that might introduce opening and
* closing braces, and that using setjmp/longjmp/return/break/continue
* between them results in undefined behavior.
*/
#define pthread_cleanup_push(routine, arg) \
do { \
__pthread_cleanup_t __cleanup; \
__pthread_cleanup_push( &__cleanup, (routine), (arg) ); \
#define pthread_cleanup_pop(execute) \
__pthread_cleanup_pop( &__cleanup, (execute)); \
} while (0); \
__END_DECLS
#endif
网友评论