美文网首页
最近规则分类算法(KNN算法)

最近规则分类算法(KNN算法)

作者: 遇见百分百 | 来源:发表于2018-05-14 15:31 被阅读0次

1、综述

     1.1 Cover和Hart在1968年提出了最初的邻近算法

     1.2 分类(classification)算法

     1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)

2、例子

预测电影的类型

3、算法详述

3.1算法流程:

        为了判断未知实例的类别,以所有已知类别的实例作为参照,选择K,计算未知实例与已知实例的距离。

        选择最近K个已知实例,根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别。

3.2细节,关于距离的衡量公式

    3.2.1Euclidean Distance 定义

其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance  )

3.3举例

4、算法的优缺点

 简单、易于理解、容易实现、通过对K的选择可具备丢噪音数据的健壮性

算法的缺点:

            需要大量空间储存所有已知实例 ,算法复杂度高(需要比较所有已知实例与要分类的实例),当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本。

5、算法改进:考虑距离,然后加上算法的权重

算法实现(Python)

from sklearnimport neighbors

#临近算法包含在这个类中

from sklearnimport datasets

#导入数据集

knn=neighbors.KNeighborsClassifier()

#调用knn的分类器

iris=datasets.load_iris()#返回一个数据集复制到iris上面

print(iris)

knn.fit(iris.data, iris.target)

#建立模型,传入特征值和目标值

predictedLabel=knn.predict([[0.1,0.2,0.3,0.4]])

print (predictedLabel)

import csv

import random

import operator

import math

#装入数据集

def loadDataset(filename,split,trainset=[],testset=[]):

with open(filename,'rt')as csvfile:

lines=csv.reader(csvfile)

dataset=list(lines)

for xin range(len(dataset)-1):

for yin range(4):

dataset[x][y]=float(dataset[x][y])

if random.random()

trainset.append(dataset[x])

else:

testset.append(dataset[x])

def enclideanDistance(instance1,instance2,length):

distance=0

    for xin range(length):

distance+=pow((instance1[x]-instance2[x]),2)

return math.sqrt(distance)

#测试距离

def getNeighbors(trainset,testInstance,k):

distance=[]

length=len(testInstance)-1

    for xin range(len(trainset)):

dist=enclideanDistance(testInstance, trainset[x], length)

distance.append((trainset[x],dist))

distance.sort(key=operator.itemgetter(1))

neighbors=[]

for xin range(k):

neighbors.append(distance[x][0])

return neighbors

#统计

def getResponse(neighbors):

classVotes={}

for xin range(len(neighbors)):

response=neighbors[x][-1]

if responsein classVotes:

classVotes[response]+=1

        else:

classVotes[response]=1

    sortedVotes=sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)

return sortedVotes[0][0]

#测试精确度

def getAccuracy(testSet,prediction):

correct=0

    for xin range(len(testSet)):

if testSet[x][-1]==prediction[x]:

correct+=1

    return (correct/float(len(testSet)))*100

def main():

trainSet=[]

testSet=[]

split=0.67

    loadDataset(r'iris.data.txt', split, trainSet, testSet)

print ('Train set:'+repr(len(trainSet)))

print ('Test set:'+repr(len(testSet)))

prediction=[]

k=3

    for xin range(len(testSet)):

neighbors=getNeighbors(trainSet, testSet[x], k)

result=getResponse(neighbors)

prediction.append(result)

accuracy=getAccuracy(testSet, prediction)

print('Accuracy:'+repr(accuracy))

main()

相关文章

  • 机器学习笔记汇总

    kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法

  • 最近规则分类算法(KNN算法)

    1、综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classificati...

  • KNN算法:K最近邻分类算法(K-NearestNeighbor

    一、KNN算法概述 最近邻算法,或者说K最近邻(KNN,K-NearestNeighbor)分类算法是数据挖掘分类...

  • knn算法

    knn算法 knn算法简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法。所谓K...

  • 利用Python进行数字识别

    思路 通过Python实现KNN算法。而KNN算法就是K最近邻(k-Nearest Neighbor,KNN)分类...

  • K近邻(KNN)

    KNN概念 kNN算法又称为k最近邻(k-nearest neighbor classification)分类算法...

  • kNN分类算法实例

    写在前面: kNN算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法,它是分类技术中最简单...

  • KNN与K-Means算法的区别

    内容参考:Kmeans算法与KNN算法的区别kNN与kMeans聚类算法的区别 KNN-近邻算法-分类算法 思想:...

  • 大数据算法:分类算法

    KNN分类算法 KNN算法,即K近邻(K Nearest Neighbour)算法,是一种基本的分类算法。其主要原...

  • KNN算法介绍

    一、算法介绍 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最...

网友评论

      本文标题:最近规则分类算法(KNN算法)

      本文链接:https://www.haomeiwen.com/subject/ezpddftx.html