美文网首页
深入理解ConcurrentHashMap

深入理解ConcurrentHashMap

作者: CodingRunning | 来源:发表于2021-02-18 20:02 被阅读0次

    一, 什么是ConcurrentHashMap

    ConcurrentHashMap和HashMap一样是一个用来存储键值对<key,value>的集合类,但和HashMap不同的是ConcurrentHashMap是线程安全的,也就是多个线程同时对ConcurrentHashMap进行修改或者删除增加操作不会出现数据错误的问题.

    二, 实现原理

    和HashMap一样采用数组+链表+红黑树实现

    但和HashMap不同的是,数组中存储的节点类型有所增加,包括Node<key,value>,TreeNode<key,value>,ForwardingNode<key,value>,新增这个节点的目的就是为了线程并发协助扩容时使用

    <img src="http://assets.processon.com/chart_image/602e363b1e085321199b5a8b.png?_=1613648876958" alt="image-20210218174438993" style="zoom:50%;" />

    三, 基本属性介绍

    //01111111111111111111111111111111 该值可以保证计算出来的哈希值为正数
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
    
    //该属性用在扩容时生成一个负值,表示正在扩容
    //The number of bits used for generation stamp in sizeCtl.
    //sizeCtl中用于生成戳记的位数。
    //Must be at least 6 for 32bit arrays.
    //对于32位数组,必须至少为6。
    private static int RESIZE_STAMP_BITS = 16;
    
    //和上面一样,也是为了在扩容时生成一个负值,具体在代码中解释
    //The bit shift for recording size stamp in sizeCtl.
    //在sizeCtl中记录大小戳的位移位。
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    
    //表示当前桶位正在被迁移
    //Encodings for Node hash fields. See above for explanation.
    static final int MOVED = -1;
    
    //表示当前桶是以树来存储节点的
    static final int TREEBIN = -2;
    
    //Number of CPUS, to place bounds on some sizings
    //cpu的数量,用来计算元素数量时限制CounterCell数组大小
    static final int NCPU = Runtime.getRuntime().availableProcessors();
    
    /**
     * The next table to use; non-null only while resizing.
     * 用来扩容的哈希表
     */
    private transient volatile Node<K, V>[] nextTable;
    
    /**
     * Base counter value, used mainly when there is no contention, but also as a fallback during table    initialization 
     * races. Updated via CAS.
     * 哈希表元素数量,通过longAdder来维护
     */
    private transient volatile long baseCount;
    
    /**
     * Table initialization and resizing control.
     * 哈希表初始化和扩容大小控制.
     * When negative, the table is being initialized or resized:
     * 当这个值为负数时,表示哈希表正在初始化或重新计算大小
     * -1 for initialization,
     * -1 表示正在初始化了
     * else -(1 + the number of active resizing threads).
     * 表示哈希表正在扩容,-(1+n),表示此时有n个线程正在共同完成哈希表的扩容
     * Otherwise, when table is null, holds the initial table size to use upon creation,or 0 for default.
     * 否则,当哈希表为空时, 保留要创建哈希表的大小0或默认(16)
     * After initialization, holds the next element count value upon which to resize the table.
     * 初始化完成之后,保留下一次需要扩容的阈值
     */
    private transient volatile int sizeCtl;
    
    /**
     * The next table index (plus one) to split while resizing.
     * 扩容时的当前转移下标
     */
    private transient volatile int transferIndex;
    
    /**
     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
     * 获取计算集合元素容量的CounterCell对象的锁
     */
    private transient volatile int cellsBusy;
    
    /**
     * Table of counter cells. When non-null, size is a power of 2.
     * 计算元素数量的数组
     */
    private transient volatile CounterCell[] counterCells;
    

    四, 构造函数

    /**
     * 和HashMap构造函数不同的是,数组容量的计算总是大于传入容量的2的幂
     * 即如果传入32则数组初始容量为64,而不是32,而HashMap计算出来为32
     */
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY : tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }
    

    五, 常用方法介绍

    /**
     * 这个方法就是HashMap中的hash方法,用来计算哈希值
     */
    static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS;
    }
    

    获取节点

    [图片上传失败...(image-4dbf54-1613649721045)]

    public V get(Object key) {
        Node<K, V>[] tab;
        Node<K, V> e, p;
        int n, eh;
        K ek;
        //计算散列值
        int h = spread(key.hashCode());
        //计算下标(这一块同HashMap不再赘述)
        if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            } else if (eh < 0)
                //哈希值小于0,表示为树节点,从树中寻找,这一步和HashMap一致
                return (p = e.find(h, key)) != null ? p.val : null;
            //在链表中寻找
            while ((e = e.next) != null) {
                if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
    

    插入节点

    <img src="http://assets.processon.com/chart_image/602e3fc76376891d5f85fb02.png?_=1613648903350" alt="put()" style="zoom:50%;" />

    public V put(K key, V value) {
        return putVal(key, value, false);
    }
    
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        //计算哈希值
        int hash = spread(key.hashCode());
        //插入桶的节点数量
        int binCount = 0;
        //使用死循环,目的是可能有的线程正在协助扩容,之后还需要插入或者更新,或者需要操作的节点所在的桶已经被其他线程锁定,需要等待其他线程执行完之后再执行
        for (Node<K, V>[] tab = table; ; ) {
            Node<K, V> f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                //初始化哈希表
                tab = initTable();
            else if
                //计算下标,并且计算该下标是否有元素
                ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                //cas插入,这一步不需要锁,因为当前桶为空
                if (casTabAt(tab, i, null, new Node<K, V>(hash, key, value, null)))
                    break;
            } else if
                //代表当前节点已经被移动,正在扩容,需要当前线程协助扩容
                ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                //锁住头节点,保证所有线程的插入都是线程安全的
                synchronized (f) {
                    //这一步判断的原因是,可能插入元素之后会造成链表树化,需要插入的位置已经发生了变化
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            //当前桶上有多少个节点
                            binCount = 1;
                            for (Node<K, V> e = f; ; ++binCount) {
                                K ek;
                                //查找到了key相同的节点,直接修改值并返回旧的值
                                if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K, V> pred = e;
                                //没有找到相同的key,直接向链表尾部插入节点
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K, V>(hash, key, value, null);
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) {
                            //给树里面插入节点
                            Node<K, V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key, value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    //需要树化
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    //修改旧值,直接将旧值返回
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        //计算节点数量
        addCount(1L, binCount);
        return null;
    }
    

    初始化哈希表

    <img src="http://assets.processon.com/chart_image/602e438de0b34d208a83a64f.png?_=1613648990041" alt="image-20210218184752228" style="zoom:50%;" />

    private final Node<K, V>[] initTable() {
        Node<K, V>[] tab;
        int sc;
        while ((tab = table) == null || tab.length == 0) {
            //小于0表示正在初始化或者正在扩容,让出cpu
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            else if
                //判断sc是否与SIZECTL是否相等,如果相等,则将SIZECTL设置为-1,表示当前正在初始化(只有一个线程能进行此操作,其他线程会被挡在前面的判断上)
                (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    //防止有线程已经初始化了1
                    if ((tab = table) == null || tab.length == 0) {
                        //该sc如果在构造器上传入了,则会被计算为大于其的2次幂,否则会按照默认值初始化
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];
                        table = tab = nt;
                        //设置下一次扩容的阈值 n - (n >>> 2) = n - n / 4 = (3 / 4) * n = 0.75n,即下一次的扩容阈值为当前哈希表数量的0.75*n
                        sc = n - (n >>> 2);
                    }
                } finally {
                    //设置sizeCtl为-1,表示初始化动作已经有线程在执行了
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }
    

    计算节点数量

    <img src="http://assets.processon.com/chart_image/602e47196376891d5f860599.png?_=1613649012194" alt="addCount()" style="zoom:50%;" />

    private final void addCount(long x, int check) {
        CounterCell[] as;
        long b, s;
        /*
         * 维护数组长度
         */
        //尝试cas直接修改值,如果修改失败
        if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a;
            long v;
            int m;
            boolean uncontended = true;
            //数组为空或者长度小于0或者对应的位置为空或者直接修改数组对应位置上的值失败,则进行修改操作
            if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            //桶上的节点数量小于等于1,不需要判断扩容,直接退出
            if (check <= 1)
                return;
            //获取当前数组的元素数量
            s = sumCount();
        }
        /*
         * 判断是否需要扩容
         */
        if (check >= 0) {
            Node<K, V>[] tab, nt;
            int n, sc;
            //当前节点数量大于扩容阈值,并且数组不为空并且数组长度小于最大值则需要扩容
            while (s >= (long) (sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) {
                //获取一个负值
                int rs = resizeStamp(n);
                //如果sc小于0,说明正在扩容,需要协助扩容
                if (sc < 0) {
                    //判断扩容是否完成
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0)
                        break;
                    //协助扩容,这里sc+1代表新加入一个线程协助扩容
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                } else if
                    /*
                     * 假设 rs = 00000000 00000000 10000000 00000000
                     * 将其向左移16位结果为 10000000 00000000 00000000 00000000 可以看出该值为负
                     * 这一步尝试将sc设置为负数
                     */
                    (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2))
                    //将旧数组置空,里面会创建一个新的数组
                    transfer(tab, null);
                //计算集合元素数量
                s = sumCount();
            }
        }
    }
    
    private final void fullAddCount(long x, boolean wasUncontended) {
        int h;
        //获取当前线程的hash值
        if ((h = ThreadLocalRandom.getProbe()) == 0) {
            ThreadLocalRandom.localInit();      // force initialization
            h = ThreadLocalRandom.getProbe();
            wasUncontended = true;
        }
        //检测是否有冲突,如果最后一个桶不为null,则为true
        boolean collide = false;
        for (; ; ) {
            CounterCell[] as;
            CounterCell a;
            int n;
            long v;
            //数组如果不为空,则优先对CounterCell里面的counterCell的value进行累加
            if ((as = counterCells) != null && (n = as.length) > 0) {
                //当前位置为空
                if ((a = as[(n - 1) & h]) == null) {
                    //当前没有线程尝试修改该值
                    if (cellsBusy == 0) {
                        CounterCell r = new CounterCell(x);
                        //抢占修改的锁
                        if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                            boolean created = false;
                            try {
                                CounterCell[] rs;
                                int m, j;
                                if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                //释放锁
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is now non-empty
                        }
                    }
                    //抢占失败
                    collide = false;
                } else if
                    //桶位不为空,重新计算线程hash值,继续循环
                    (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                /*
                         * 重新计算hash值之后,对应的桶位还是不为空,对value进行累加
                         * 尝试cas对value加值
                         */
                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                    break;
                //数组长度已经大于等于CPU的核数了,不需要再扩容了
                else if (counterCells != as || n >= NCPU)
                    collide = false;
                //当没有冲突,修改为有冲突,重新计算hash值,继续循环
                else if (!collide)
                    collide = true;
                else if
                    //多次循环没有设置成功值,则对原数组进行扩容
                    (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    try {
                        if (counterCells == as) {// Expand table unless stale
                            //数组长度没有超过cpu核数,将数组扩容两倍
                            CounterCell[] rs = new CounterCell[n << 1];
                            for (int i = 0; i < n; ++i)
                                //扩容使用
                                rs[i] = as[i];
                            counterCells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                //重新计算随机值
                h = ThreadLocalRandom.advanceProbe(h);
            } else if
                //初始进来数组为空,需要初始化数组
                (cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                boolean init = false;
                try {
                    if (counterCells == as) {
                        CounterCell[] rs = new CounterCell[2];
                        rs[h & 1] = new CounterCell(x);
                        counterCells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                if (init)
                    break;
            } else if
                //数组为空并且有其他线程正在创建数组,尝试直接对baseCount进行累加
                (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                break;                          // Fall back on using base
        }
    }
    

    扩容并迁移

    <img src="http://assets.processon.com/chart_image/602e5011e401fd48f2abd338.png?_=1613649037166" alt="image-20210218194048936" style="zoom:50%;" />

    private final void transfer(Node<K, V>[] tab, Node<K, V>[] nextTab) {
        //stride表示迁移数据的区间
        int n = tab.length, stride;
        /*
         * 这里计算每个CPU负责迁移元素的个数
         * 如果这里的跨度区间小于16,则按照最小区间16来计算
         */
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE;
        //这里表示为第一个线程来扩容
        if (nextTab == null) {
            try {
                //扩容为两倍
                @SuppressWarnings("unchecked")
                Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            //迁移数据的index
            transferIndex = n;
        }
        //新扩容数组的长度
        int nextn = nextTab.length;
        //创建头节点,该节点会被标识为MOVED表示数据正在迁移中
        ForwardingNode<K, V> fwd = new ForwardingNode<K, V>(nextTab);
    
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        //从后向前迁移
        for (int i = 0, bound = 0; ; ) {
            Node<K, V> f;
            int fh;
            while (advance) {
                int nextIndex, nextBound;
                //不属于自己的迁移位置或者已经迁移完成直接退出
                if (--i >= bound || finishing)
                    advance = false;
                else if
                    //下一个迁移位置小于等于0直接退出
                    ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                } else if
                    //计算迁移位置(多线程会划分多个区间)
                    (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                //判断是否所有的线程都做完了任务
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    //等于0.75 * 2n,也就是新数组扩容2倍*扩容因子
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    //判断扩容是否成功
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            } else if
                //如果当前位置为空,直接插入fwd节点,表示当前节点正在被迁移
                ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                //正在被迁移,需要重新计算位置
                advance = true; // already processed
            else {
                //迁移代码
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K, V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K, V> lastRun = f;
                            for (Node<K, V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            } else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K, V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash;
                                K pk = p.key;
                                V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K, V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K, V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            //迁移完成,设置头节点为fwd
                            setTabAt(tab, i, fwd);
                            advance = true;
                        } else if (f instanceof TreeBin) {
                            TreeBin<K, V> t = (TreeBin<K, V>) f;
                            TreeNode<K, V> lo = null, loTail = null;
                            TreeNode<K, V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K, V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K, V> p = new TreeNode<K, V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                } else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K, V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K, V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            //迁移完成,设置头节点为fwd
                            setTabAt(tab, i, fwd);
                            //重新计算位置继续迁移
                            advance = true;
                        }
                    }
                }
            }
        }
    }
    

    获取节点数量

    public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 : (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) n);
    }
    
    /**
     * 获取哈希表中节点的数量(非线程安全)
     * 这个方法返回的数据不一定准确,因为可能在调用该方法的时候,有其他线程正在尝试给数组中的节点加值
     */
    final long sumCount() {
        CounterCell[] as = counterCells;
        CounterCell a;
        long sum = baseCount;
        if (as != null) {
            for (CounterCell counterCell : as) {
                if ((a = counterCell) != null)
                    sum += a.value;
            }
        }
        return sum;
    }
    

    相关文章

      网友评论

          本文标题:深入理解ConcurrentHashMap

          本文链接:https://www.haomeiwen.com/subject/ezpnxltx.html