美文网首页
机器学习(7)逻辑回归

机器学习(7)逻辑回归

作者: __method__ | 来源:发表于2020-06-08 01:17 被阅读0次

    逻辑回归简介

    logistic回归是一种广义的线性回归分析模型,以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。

    绘制sigmoid曲线
    import numpy as np
    import matplotlib.pyplot as plt
    
    def sigmoid(t):
        return 1. / (1. + np.exp(-t))
    
    x = np.linspace(-10, 10, 500)
    
    plt.plot(x, sigmoid(x))
    plt.show()
    
    逻辑回归的损失函数

    y=log(x)的函数图像如下图所示:


    y=-log(x)的函数图像如下图所示:

    由于p的取值只能是在0到1之间,故:

    当p取值为0时,按之前的sigmoid函数定义,预测分类y应该为0,但此时真实分类y=1,而-log(p)趋于无穷大(损失函数大),很好的表达了预测得不准;当p取值为1时,按之前的sigmoid函数定义,预测分类y应该为1,此时真实分类y也等于1,-log(p)趋于0(损失函数小),很好的表达了预测得准确。

    另外一种情况同理。

    y=-log(-x)的函数图像如下图所示(与y=-log(x)关于y轴对称):


    y=-log(1-x)的函数图像如下图所示(沿着x轴向右平移一个单位):


    合成一个式子:

    考虑多个样本:


    损失函数求导

    推导过程

    向量化:


    封装Logistics模型

    在之前实现的线性回归的类的基础上改写:

    import numpy as np
    from .metrics import accuracy_score
    
    class LogisticRegression:
    
        def __init__(self):
            """初始化Logistic Regression模型"""
            self.coef_ = None
            self.intercept_ = None
            self._theta = None
    
        def _sigmoid(self, t):
            return 1. / (1. + np.exp(-t))
    
        def fit(self, X_train, y_train, eta=0.01, n_iters=1e4):
            """根据训练数据集X_train, y_train, 使用梯度下降法训练Logistic Regression模型"""
            assert X_train.shape[0] == y_train.shape[0], \
                "the size of X_train must be equal to the size of y_train"
    
            def J(theta, X_b, y):
                y_hat = self._sigmoid(X_b.dot(theta))
                try:
                    return - np.sum(y*np.log(y_hat) + (1-y)*np.log(1-y_hat)) / len(y)
                except:
                    return float('inf')
    
            def dJ(theta, X_b, y):
                return X_b.T.dot(self._sigmoid(X_b.dot(theta)) - y) / len(y)
    
            def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
    
                theta = initial_theta
                cur_iter = 0
    
                while cur_iter < n_iters:
                    gradient = dJ(theta, X_b, y)
                    last_theta = theta
                    theta = theta - eta * gradient
                    if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                        break
    
                    cur_iter += 1
    
                return theta
    
            X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
            initial_theta = np.zeros(X_b.shape[1])
            self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
    
            self.intercept_ = self._theta[0]
            self.coef_ = self._theta[1:]
    
            return self
    
        def predict_proba(self, X_predict):
            """给定待预测数据集X_predict,返回表示X_predict的结果概率向量"""
            assert self.intercept_ is not None and self.coef_ is not None, \
                "must fit before predict!"
            assert X_predict.shape[1] == len(self.coef_), \
                "the feature number of X_predict must be equal to X_train"
    
            X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
            return self._sigmoid(X_b.dot(self._theta))
    
        def predict(self, X_predict):
            """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
            assert self.intercept_ is not None and self.coef_ is not None, \
                "must fit before predict!"
            assert X_predict.shape[1] == len(self.coef_), \
                "the feature number of X_predict must be equal to X_train"
    
            proba = self.predict_proba(X_predict)
            return np.array(proba >= 0.5, dtype='int')
    
        def score(self, X_test, y_test):
            """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
    
            y_predict = self.predict(X_test)
            return accuracy_score(y_test, y_predict)
    
        def __repr__(self):
            return "LogisticRegression()"
    

    实现逻辑回归

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets
    
    iris = datasets.load_iris()
    
    X = iris.data
    y = iris.target
    
    X = X[y<2,:2]
    y = y[y<2]
    
    X.shape
    
    (100, 2)
    
    y.shape
    
    (100,)
    
    plt.scatter(X[y==0,0], X[y==0,1], color="red")
    plt.scatter(X[y==1,0], X[y==1,1], color="blue")
    plt.show()
    

    使用逻辑回归

    from playML.model_selection import train_test_split
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, seed=666)
    
    from playML.LogisticRegression import LogisticRegression
    
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
    
    LogisticRegression()
    
    log_reg.score(X_test, y_test)
    
    1.0
    
    log_reg.predict_proba(X_test)
    
    array([ 0.92972035,  0.98664939,  0.14852024,  0.17601199,  0.0369836 ,
            0.0186637 ,  0.04936918,  0.99669244,  0.97993941,  0.74524655,
            0.04473194,  0.00339285,  0.26131273,  0.0369836 ,  0.84192923,
            0.79892262,  0.82890209,  0.32358166,  0.06535323,  0.20735334])
    
    log_reg.predict(X_test)
    
    array([1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0])
    
    y_test
    
    array([1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0])
    

    决策边界

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets
    
    iris = datasets.load_iris()
    
    X = iris.data
    y = iris.target
    
    X = X[y<2,:2]
    y = y[y<2]
    
    plt.scatter(X[y==0,0], X[y==0,1], color="red")
    plt.scatter(X[y==1,0], X[y==1,1], color="blue")
    plt.show()
    
    from playML.model_selection import train_test_split
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, seed=666)
    
    from playML.LogisticRegression import LogisticRegression
    
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
    
    LogisticRegression()
    
    log_reg.coef_
    
    array([ 3.01796521, -5.04447145])
    
    log_reg.intercept_
    
    -0.6937719272911228
    

    在逻辑回归中,易得决策边界为 theta*X_b=0 的直线

    如果只有两个特征值,则很容易通过公式画出逻辑回归的决策边界


    def x2(x1):
        return (-log_reg.coef_[0] * x1 - log_reg.intercept_) / log_reg.coef_[1]
    
    x1_plot = np.linspace(4, 8, 1000)
    x2_plot = x2(x1_plot)
    
    plt.scatter(X[y==0,0], X[y==0,1], color="red")
    plt.scatter(X[y==1,0], X[y==1,1], color="blue")
    plt.plot(x1_plot, x2_plot)
    plt.show()
    
    plt.scatter(X_test[y_test==0,0], X_test[y_test==0,1], color="red")
    plt.scatter(X_test[y_test==1,0], X_test[y_test==1,1], color="blue")
    plt.plot(x1_plot, x2_plot)
    plt.show()
    
    不规则的决策边界的绘制

    def plot_decision_boundary(model, axis):
        # meshgrid网格矩阵
        x0, x1 = np.meshgrid(  
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
      #  np.c_ 行拼接, ravel()高维矩阵平铺降成一维
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
        
    plot_decision_boundary(log_reg, axis=[4, 7.5, 1.5, 4.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    

    kNN的决策边界

    from sklearn.neighbors import KNeighborsClassifier
    
    knn_clf = KNeighborsClassifier()
    knn_clf.fit(X_train, y_train)
    
    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
               metric_params=None, n_jobs=1, n_neighbors=5, p=2,
               weights='uniform')
    
    knn_clf.score(X_test, y_test)
    
    1.0
    
    plot_decision_boundary(knn_clf, axis=[4, 7.5, 1.5, 4.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    knn_clf_all = KNeighborsClassifier()
    knn_clf_all.fit(iris.data[:,:2], iris.target)
    
    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
               metric_params=None, n_jobs=1, n_neighbors=5, p=2,
               weights='uniform')
    
    plot_decision_boundary(knn_clf_all, axis=[4, 8, 1.5, 4.5])
    plt.scatter(iris.data[iris.target==0,0], iris.data[iris.target==0,1])
    plt.scatter(iris.data[iris.target==1,0], iris.data[iris.target==1,1])
    plt.scatter(iris.data[iris.target==2,0], iris.data[iris.target==2,1])
    plt.show()
    
    image.png
    knn_clf_all = KNeighborsClassifier(n_neighbors=50)
    knn_clf_all.fit(iris.data[:,:2], iris.target)
    
    plot_decision_boundary(knn_clf_all, axis=[4, 8, 1.5, 4.5])
    plt.scatter(iris.data[iris.target==0,0], iris.data[iris.target==0,1])
    plt.scatter(iris.data[iris.target==1,0], iris.data[iris.target==1,1])
    plt.scatter(iris.data[iris.target==2,0], iris.data[iris.target==2,1])
    plt.show()
    

    多项式特征应用于逻辑回归

    逻辑回归中添加多项式特征

    import numpy as np
    import matplotlib.pyplot as plt
    
    np.random.seed(666)
    X = np.random.normal(0, 1, size=(200, 2))
    y = np.array((X[:,0]**2+X[:,1]**2)<1.5, dtype='int')
    
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    

    使用逻辑回归

    from playML.LogisticRegression import LogisticRegression
    
    log_reg = LogisticRegression()
    log_reg.fit(X, y)
    
    LogisticRegression()
    
    log_reg.score(X, y)
    
    0.60499999999999998
    
    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
    
    plot_decision_boundary(log_reg, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler
    
    def PolynomialLogisticRegression(degree):
        return Pipeline([
            ('poly', PolynomialFeatures(degree=degree)),
            ('std_scaler', StandardScaler()),
            ('log_reg', LogisticRegression())
        ])
    
    poly_log_reg = PolynomialLogisticRegression(degree=2)
    poly_log_reg.fit(X, y)
    
    Pipeline(steps=[('poly', PolynomialFeatures(degree=2, include_bias=True, interaction_only=False)), ('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('log_reg', LogisticRegression())])
    
    poly_log_reg.score(X, y)
    
    0.94999999999999996
    
    plot_decision_boundary(poly_log_reg, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    poly_log_reg2 = PolynomialLogisticRegression(degree=20)
    poly_log_reg2.fit(X, y)
    
    Pipeline(steps=[('poly', PolynomialFeatures(degree=20, include_bias=True, interaction_only=False)), ('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('log_reg', LogisticRegression())])
    
    plot_decision_boundary(poly_log_reg2, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    

    逻辑回归的模型正则化

    scikit-learn中的逻辑回归

    import numpy as np
    import matplotlib.pyplot as plt
    
    np.random.seed(666)
    X = np.random.normal(0, 1, size=(200, 2))
    y = np.array((X[:,0]**2+X[:,1])<1.5, dtype='int')
    for _ in range(20):
        y[np.random.randint(200)] = 1
    
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    from sklearn.model_selection import train_test_split
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
    

    使用scikit-learn中的逻辑回归

    from sklearn.linear_model import LogisticRegression
    
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
    
    LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
              intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
              penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
              verbose=0, warm_start=False)
    
    log_reg.score(X_train, y_train)
    
    0.79333333333333333
    
    log_reg.score(X_test, y_test)
    
    0.85999999999999999
    
    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
    
    plot_decision_boundary(log_reg, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler
    
    def PolynomialLogisticRegression(degree):
        return Pipeline([
            ('poly', PolynomialFeatures(degree=degree)),
            ('std_scaler', StandardScaler()),
            ('log_reg', LogisticRegression())
        ])
    
    poly_log_reg = PolynomialLogisticRegression(degree=2)
    poly_log_reg.fit(X_train, y_train)
    
    Pipeline(steps=[('poly', PolynomialFeatures(degree=2, include_bias=True, interaction_only=False)), ('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('log_reg', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
              intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
              penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
              verbose=0, warm_start=False))])
    
    poly_log_reg.score(X_train, y_train)
    
    0.91333333333333333
    
    poly_log_reg.score(X_test, y_test)
    
    0.93999999999999995
    
    plot_decision_boundary(poly_log_reg, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    poly_log_reg2 = PolynomialLogisticRegression(degree=20)
    poly_log_reg2.fit(X_train, y_train)
    
    Pipeline(steps=[('poly', PolynomialFeatures(degree=20, include_bias=True, interaction_only=False)), ('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('log_reg', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
              intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
              penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
              verbose=0, warm_start=False))])
    
    poly_log_reg2.score(X_train, y_train)
    
    0.93999999999999995
    
    poly_log_reg2.score(X_test, y_test)
    
    0.92000000000000004
    
    plot_decision_boundary(poly_log_reg2, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    def PolynomialLogisticRegression(degree, C):
        return Pipeline([
            ('poly', PolynomialFeatures(degree=degree)),
            ('std_scaler', StandardScaler()),
            ('log_reg', LogisticRegression(C=C))
        ])
    
    poly_log_reg3 = PolynomialLogisticRegression(degree=20, C=0.1)
    poly_log_reg3.fit(X_train, y_train)
    
    Pipeline(steps=[('poly', PolynomialFeatures(degree=20, include_bias=True, interaction_only=False)), ('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('log_reg', LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
              intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
              penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
              verbose=0, warm_start=False))])
    
    poly_log_reg3.score(X_train, y_train)
    
    0.85333333333333339
    
    poly_log_reg3.score(X_test, y_test)
    
    0.92000000000000004
    
    plot_decision_boundary(poly_log_reg3, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    
    def PolynomialLogisticRegression(degree, C, penalty='l2'):
        return Pipeline([
            ('poly', PolynomialFeatures(degree=degree)),
            ('std_scaler', StandardScaler()),
            ('log_reg', LogisticRegression(C=C, penalty=penalty))
        ])
    
    poly_log_reg4 = PolynomialLogisticRegression(degree=20, C=0.1, penalty='l1')
    poly_log_reg4.fit(X_train, y_train)
    
    Pipeline(steps=[('poly', PolynomialFeatures(degree=20, include_bias=True, interaction_only=False)), ('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('log_reg', LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
              intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
              penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
              verbose=0, warm_start=False))])
    
    poly_log_reg4.score(X_train, y_train)
    
    0.82666666666666666
    
    poly_log_reg4.score(X_test, y_test)
    
    0.90000000000000002
    
    plot_decision_boundary(poly_log_reg4, axis=[-4, 4, -4, 4])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    

    使用逻辑回归解决多分类问题

    OvR 和 OvO

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets
    
    iris = datasets.load_iris()
    X = iris.data[:,:2]
    y = iris.target
    
    from sklearn.model_selection import train_test_split
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
    
    from sklearn.linear_model import LogisticRegression
    
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
    
    LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
              intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
              penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
              verbose=0, warm_start=False)
    
    log_reg.score(X_test, y_test)
    
    0.65789473684210531
    
    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
    
    plot_decision_boundary(log_reg, axis=[4, 8.5, 1.5, 4.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.scatter(X[y==2,0], X[y==2,1])
    plt.show()
    
    log_reg2 = LogisticRegression(multi_class="multinomial", solver="newton-cg")
    log_reg2.fit(X_train, y_train)
    log_reg2.score(X_test, y_test)
    
    0.78947368421052633
    
    plot_decision_boundary(log_reg2, axis=[4, 8.5, 1.5, 4.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.scatter(X[y==2,0], X[y==2,1])
    plt.show()
    

    使用所有的数据

    X = iris.data
    y = iris.target
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
    
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
    log_reg.score(X_test, y_test)
    
    0.94736842105263153
    
    log_reg2 = LogisticRegression(multi_class="multinomial", solver="newton-cg")
    log_reg2.fit(X_train, y_train)
    log_reg2.score(X_test, y_test)
    
    1.0
    

    OvO and OvR

    from sklearn.multiclass import OneVsRestClassifier
    
    ovr = OneVsRestClassifier(log_reg)
    ovr.fit(X_train, y_train)
    ovr.score(X_test, y_test)
    
    0.94736842105263153
    
    from sklearn.multiclass import OneVsOneClassifier
    
    ovo = OneVsOneClassifier(log_reg)
    ovo.fit(X_train, y_train)
    ovo.score(X_test, y_test)
    
    1.0
    

    相关文章

      网友评论

          本文标题:机器学习(7)逻辑回归

          本文链接:https://www.haomeiwen.com/subject/ezyktktx.html