美文网首页
Volley完全解析(三)从源码的角度理解Volley

Volley完全解析(三)从源码的角度理解Volley

作者: 虎三呀 | 来源:发表于2018-12-06 17:47 被阅读0次

    经过前两篇文章的学习,Volley的用法我们已经掌握的差不多了,但是对于Volley的工作原理,恐怕有很多朋友还不是很清楚。因此,本篇文章中我们就来一起阅读一下Volley的源码,将它的工作流程整体地梳理一遍。同时,这也是Volley系列的最后一篇文章了。

    其实,Volley的官方文档中本身就附有了一张Volley的工作流程图,如下图所示。


    多数朋友突然看到一张这样的图,应该会和我一样,感觉一头雾水吧?没错,目前我们对Volley背后的工作原理还没有一个概念性的理解,直接就来看这张图自然会有些吃力。不过没关系,下面我们就去分析一下Volley的源码,之后再重新来看这张图就会好理解多了。

    说起分析源码,那么应该从哪儿开始看起呢?这就要回顾一下Volley的用法了,还记得吗,使用Volley的第一步,首先要调用Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么我们自然要从这个方法开始看起了,代码如下所示:

    public static RequestQueue newRequestQueue(Context context, BaseHttpStack stack) {
        BasicNetwork network;
        if (stack == null) {
            if (Build.VERSION.SDK_INT >= 9) {
                network = new BasicNetwork(new HurlStack());
            } else {
                // Prior to Gingerbread, HttpUrlConnection was unreliable.
                // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                // At some point in the future we'll move our minSdkVersion past Froyo and can
                // delete this fallback (along with all Apache HTTP code).
                String userAgent = "volley/0";
                try {
                    String packageName = context.getPackageName();
                    PackageInfo info =
                            context.getPackageManager().getPackageInfo(packageName, /* flags= */ 0);
                    userAgent = packageName + "/" + info.versionCode;
                } catch (PackageManager.NameNotFoundException e) {
                }
    
                network =
                        new BasicNetwork(
                                new HttpClientStack(AndroidHttpClient.newInstance(userAgent)));
            }
        } else {
            network = new BasicNetwork(stack);
        }
    
        return newRequestQueue(context, network);
    }
    private static RequestQueue newRequestQueue(Context context, Network network) {
            File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
            RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
            queue.start();
            return queue;
    }
    

    可以看到,这里在第3行判断如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而HttpClientStack的内部则是使用HttpClient进行网络通讯的,这里为什么这样选择呢?可以参考官网上的说明。

    创建好了HttpStack之后,接下来又创建了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将RequestQueue返回,这样newRequestQueue()的方法就执行结束了。

    那么RequestQueue的start()方法内部到底执行了什么东西呢?我们跟进去瞧一瞧:

        public void start() {
            stop(); // Make sure any currently running dispatchers are stopped.
            // Create the cache dispatcher and start it.
            mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
            mCacheDispatcher.start();
    
            // Create network dispatchers (and corresponding threads) up to the pool size.
            for (int i = 0; i < mDispatchers.length; i++) {
                NetworkDispatcher networkDispatcher =
                        new NetworkDispatcher(mNetworkQueue, mNetwork, mCache, mDelivery);
                mDispatchers[i] = networkDispatcher;
                networkDispatcher.start();
            }
        }
    

    这里先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来,其中CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。

    得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了,那么不用说,add()方法的内部肯定有着非常复杂的逻辑,我们来一起看一下:

    public <T> Request<T> add(Request<T> request) {
        // Tag the request as belonging to this queue and add it to the set of current requests.
        request.setRequestQueue(this);
        synchronized (mCurrentRequests) {
            mCurrentRequests.add(request);
        }
        // Process requests in the order they are added.
        request.setSequence(getSequenceNumber());
        request.addMarker("add-to-queue");
        // If the request is uncacheable, skip the cache queue and go straight to the network.
        if (!request.shouldCache()) {
            mNetworkQueue.add(request);
            return request;
        }
        // Insert request into stage if there's already a request with the same cache key in flight.
        synchronized (mWaitingRequests) {
            String cacheKey = request.getCacheKey();
            if (mWaitingRequests.containsKey(cacheKey)) {
                // There is already a request in flight. Queue up.
                Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
                if (stagedRequests == null) {
                    stagedRequests = new LinkedList<Request<?>>();
                }
                stagedRequests.add(request);
                mWaitingRequests.put(cacheKey, stagedRequests);
                if (VolleyLog.DEBUG) {
                    VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
                }
            } else {
                // Insert 'null' queue for this cacheKey, indicating there is now a request in
                // flight.
                mWaitingRequests.put(cacheKey, null);
                mCacheQueue.add(request);
            }
            return request;
        }
    }
    

    可以看到,在第11行的时候会判断当前的请求是否可以缓存,如果不能缓存则在第12行直接将这条请求加入网络请求队列,可以缓存的话则在第33行将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。

    OK,那么既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,代码如下所示:

    public class CacheDispatcher extends Thread {
     
        ……
     
        @Override
        public void run() {
            if (DEBUG) VolleyLog.v("start new dispatcher");
            Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
            // Make a blocking call to initialize the cache.
            mCache.initialize();
            while (true) {
                try {
                    // Get a request from the cache triage queue, blocking until
                    // at least one is available.
                    final Request<?> request = mCacheQueue.take();
                    request.addMarker("cache-queue-take");
                    // If the request has been canceled, don't bother dispatching it.
                    if (request.isCanceled()) {
                        request.finish("cache-discard-canceled");
                        continue;
                    }
                    // Attempt to retrieve this item from cache.
                    Cache.Entry entry = mCache.get(request.getCacheKey());
                    if (entry == null) {
                        request.addMarker("cache-miss");
                        // Cache miss; send off to the network dispatcher.
                        mNetworkQueue.put(request);
                        continue;
                    }
                    // If it is completely expired, just send it to the network.
                    if (entry.isExpired()) {
                        request.addMarker("cache-hit-expired");
                        request.setCacheEntry(entry);
                        mNetworkQueue.put(request);
                        continue;
                    }
                    // We have a cache hit; parse its data for delivery back to the request.
                    request.addMarker("cache-hit");
                    Response<?> response = request.parseNetworkResponse(
                            new NetworkResponse(entry.data, entry.responseHeaders));
                    request.addMarker("cache-hit-parsed");
                    if (!entry.refreshNeeded()) {
                        // Completely unexpired cache hit. Just deliver the response.
                        mDelivery.postResponse(request, response);
                    } else {
                        // Soft-expired cache hit. We can deliver the cached response,
                        // but we need to also send the request to the network for
                        // refreshing.
                        request.addMarker("cache-hit-refresh-needed");
                        request.setCacheEntry(entry);
                        // Mark the response as intermediate.
                        response.intermediate = true;
                        // Post the intermediate response back to the user and have
                        // the delivery then forward the request along to the network.
                        mDelivery.postResponse(request, response, new Runnable() {
                            @Override
                            public void run() {
                                try {
                                    mNetworkQueue.put(request);
                                } catch (InterruptedException e) {
                                    // Not much we can do about this.
                                }
                            }
                        });
                    }
                } catch (InterruptedException e) {
                    // We may have been interrupted because it was time to quit.
                    if (mQuit) {
                        return;
                    }
                    continue;
                }
            }
        }
    }
    

    代码有点长,我们只挑重点看。首先在11行可以看到一个while(true)循环,说明缓存线程始终是在运行的,接着在第23行会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。之后会在第39行调用Request的parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了,这部分代码我们先跳过,因为它的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么我们等下合并在一起看就好了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码如下所示:

    public class NetworkDispatcher extends Thread {
        ……
        @Override
        public void run() {
            Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
            Request<?> request;
            while (true) {
                try {
                    // Take a request from the queue.
                    request = mQueue.take();
                } catch (InterruptedException e) {
                    // We may have been interrupted because it was time to quit.
                    if (mQuit) {
                        return;
                    }
                    continue;
                }
                try {
                    request.addMarker("network-queue-take");
                    // If the request was cancelled already, do not perform the
                    // network request.
                    if (request.isCanceled()) {
                        request.finish("network-discard-cancelled");
                        continue;
                    }
                    addTrafficStatsTag(request);
                    // Perform the network request.
                    NetworkResponse networkResponse = mNetwork.performRequest(request);
                    request.addMarker("network-http-complete");
                    // If the server returned 304 AND we delivered a response already,
                    // we're done -- don't deliver a second identical response.
                    if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                        request.finish("not-modified");
                        continue;
                    }
                    // Parse the response here on the worker thread.
                    Response<?> response = request.parseNetworkResponse(networkResponse);
                    request.addMarker("network-parse-complete");
                    // Write to cache if applicable.
                    // TODO: Only update cache metadata instead of entire record for 304s.
                    if (request.shouldCache() && response.cacheEntry != null) {
                        mCache.put(request.getCacheKey(), response.cacheEntry);
                        request.addMarker("network-cache-written");
                    }
                    // Post the response back.
                    request.markDelivered();
                    mDelivery.postResponse(request, response);
                } catch (VolleyError volleyError) {
                    parseAndDeliverNetworkError(request, volleyError);
                } catch (Exception e) {
                    VolleyLog.e(e, "Unhandled exception %s", e.toString());
                    mDelivery.postError(request, new VolleyError(e));
                }
            }
        }
    }
    

    同样地,在第7行我们看到了类似的while(true)循环,说明网络请求线程也是在不断运行的。在第28行的时候会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,我们来看下它的performRequest()方法,如下所示:

    public class BasicNetwork implements Network {
        ……
        @Override
        public NetworkResponse performRequest(Request<?> request) throws VolleyError {
            long requestStart = SystemClock.elapsedRealtime();
            while (true) {
                HttpResponse httpResponse = null;
                byte[] responseContents = null;
                Map<String, String> responseHeaders = new HashMap<String, String>();
                try {
                    // Gather headers.
                    Map<String, String> headers = new HashMap<String, String>();
                    addCacheHeaders(headers, request.getCacheEntry());
                    httpResponse = mHttpStack.performRequest(request, headers);
                    StatusLine statusLine = httpResponse.getStatusLine();
                    int statusCode = statusLine.getStatusCode();
                    responseHeaders = convertHeaders(httpResponse.getAllHeaders());
                    // Handle cache validation.
                    if (statusCode == HttpStatus.SC_NOT_MODIFIED) {
                        return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED,
                                request.getCacheEntry() == null ? null : request.getCacheEntry().data,
                                responseHeaders, true);
                    }
                    // Some responses such as 204s do not have content.  We must check.
                    if (httpResponse.getEntity() != null) {
                      responseContents = entityToBytes(httpResponse.getEntity());
                    } else {
                      // Add 0 byte response as a way of honestly representing a
                      // no-content request.
                      responseContents = new byte[0];
                    }
                    // if the request is slow, log it.
                    long requestLifetime = SystemClock.elapsedRealtime() - requestStart;
                    logSlowRequests(requestLifetime, request, responseContents, statusLine);
                    if (statusCode < 200 || statusCode > 299) {
                        throw new IOException();
                    }
                    return new NetworkResponse(statusCode, responseContents, responseHeaders, false);
                } catch (Exception e) {
                    ……
                }
            }
        }
    }
    

    这段方法中大多都是一些网络请求细节方面的东西,我们并不需要太多关心,需要注意的是在第14行调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,我们就不再跟进去阅读了,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

    在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。还记得我们在上一篇文章中学习的自定义Request的方式吗?其中parseNetworkResponse()这个方法就是必须要重写的。

    在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:

    public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
        request.markDelivered();
        request.addMarker("post-response");
        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
    }
    

    其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:

    private class ResponseDeliveryRunnable implements Runnable {
        private final Request mRequest;
        private final Response mResponse;
        private final Runnable mRunnable;
     
        public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
            mRequest = request;
            mResponse = response;
            mRunnable = runnable;
        }
     
        @SuppressWarnings("unchecked")
        @Override
        public void run() {
            // If this request has canceled, finish it and don't deliver.
            if (mRequest.isCanceled()) {
                mRequest.finish("canceled-at-delivery");
                return;
            }
            // Deliver a normal response or error, depending.
            if (mResponse.isSuccess()) {
                mRequest.deliverResponse(mResponse.result);
            } else {
                mRequest.deliverError(mResponse.error);
            }
            // If this is an intermediate response, add a marker, otherwise we're done
            // and the request can be finished.
            if (mResponse.intermediate) {
                mRequest.addMarker("intermediate-response");
            } else {
                mRequest.finish("done");
            }
            // If we have been provided a post-delivery runnable, run it.
            if (mRunnable != null) {
                mRunnable.run();
            }
       }
    }
    

    代码虽然不多,但我们并不需要行行阅读,抓住重点看即可。其中在第22行调用了Request的deliverResponse()方法,有没有感觉很熟悉?没错,这个就是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。
    好了,到这里我们就把Volley的完整执行流程全部梳理了一遍,你是不是已经感觉已经很清晰了呢?

    相关文章

      网友评论

          本文标题:Volley完全解析(三)从源码的角度理解Volley

          本文链接:https://www.haomeiwen.com/subject/fbaocqtx.html