显著性目标检测
1 每个数据库单独训练
方法 | ECSSD | PASCAL-S | DUTS-test | HKU-IS | SOD | DUT-OMRON | 时间 | 期刊 | 备注 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAE | MAE | MAE | MAE | MAE | ||||||||||
SRNet-V[1] | 0.938 | 0.045 | 0.868 | 0.078 | 0.869 | 0.047 | 0.929 | 0.038 | 0.851 | 0.084 | 0.802 | 0.067 | 2019 | arxiv | 以VGG为骨架 |
SRNet-R [1] | 0.944 | 0.04 | 0.883 | 0.075 | 0.878 | 0.045 | 0.930 | 0.036 | 0.859 | 0.076 | 0.830 | 0.060 | 以ResNet为骨架 | ||
2 用MSRA10K或者DUTS -TR作为训练集,其他数据库作为测试集
方法 | ECSSD | PASCAL-S | DUTS-test | HKU-IS | SOD | DUT-OMRON | 时间 | 期刊 | 备注 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAE | MAE | MAE | MAE | MAE | ||||||||||
SFCN[2] | 0.911 | 0.0421 | 0.813 | 0.0732 | 0.742 | 0.0622 | 0.906 | 0.0357 | 0.822 | 0.1012 | 0.718 | 0.0643 | 2019 | arxiv | |
RDS-1152[3] | 0.953 | 0.036 | 0.874 | 0.08 | 0.867 | 0.044 | 0.942 | 0.028 | 0.817 | 0.083 | 0.837 | 0.05 | 2019 | arxiv | 使用目标检测的数据集进行辅助 |
DGRL[4] | 0.903 | 0.045 | - | - | 0.768 | 0.051 | 0.882 | 0.037 | - | - | 0.709 | 0.063 | 2018 | cvpr2018 | |
PAGRN[5] | 0.891 | 0.064 | 0.803 | 0.092 | 0.788 | 0.055 | 0.886 | 0.048 | - | - | 0.711 | 0.072 | 2018 | cvpr2018 | 353X353的输出 |
PiCANet[6] | 0.931 | 0.047 | 0.88 | 0.0781 | 0.851 | 0.054 | 0.8921 | 0.042 | 0.855 | 0.108 | 0.794 | 0.068 | 2018 | cvpr2018 |
多模态显著性目标检测
RGB-D显著性目标检测
模型 | NJUD | NLRP | STEREO | DES | 发表时间 | 期刊 | 备注 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MAE | MAE | MAE | ||||||||
AF[7] | 0.899 | 0.0534 | 0.899 | 0.0327 | 0.904 | 0.0462 | -- | -- | 2019 | arxiv | |
MV-CNN[8] | --- | --- | --- | --- | --- | --- | --- | --- | 2018 | IEEE | |
参考文献
-
Deep Reasoning with Multi-scale Context for Salient Object Detection,Zun Li,2019,http://arxiv.org/abs/1901.08362 ↩ ↩
-
Salient Object Detection with Lossless Feature Reflection and Weighted Structural Loss , Pingping Zhang, https://arxiv.org/abs/1901.06823 ↩
-
Richer and Deeper Supervision Network for Salient Object Detection, Sen Jia,Neil D. B. Bruce,https://www.jianshu.com/go-wild?ac=2&url=https://arxiv.org/abs/1901.02425 ↩
-
Detect Globally, Refine Locally: A Novel Approach to Saliency Detection, Tiantian Wang,链接:https://www.crcv.ucf.edu/papers/cvpr2018/camera_ready.pdf, 代码:https://github.com/TiantianWang/CVPR18_detect_globally_refine_locally ↩
-
Progressive Attention Guided Recurrent Network for Salient Object Detection,Xiaoning Zhang,链接:http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Progressive_Attention_Guided_CVPR_2018_paper.html, 代码:https://github.com/zhangxiaoning666/PAGR ↩
-
PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection,Nian Liu,链接:http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_PiCANet_Learning_Pixel-Wise_CVPR_2018_paper.pdf
, 代码:https://github.com/nian-liu/PiCANet ↩ -
Adaptive Fusion for RGB-D Salient Object Detection Ningning, Ningning Wang, Xiaojin Gong, 2019, https://arxiv.org/abs/1901.01369 ↩
-
CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion,Junwei Han,2018,https://ieeexplore.ieee.org/document/8091125 ↩
网友评论