机器视觉在智能工厂中扮演着重要的角色,可以有效增加产能、提升产品合格率。
在选择机器视觉系统时,传统工业智能视觉设备的优势是体积小、集成度高、便于开发使用;嵌入式机器视觉系统的优势则在于其配置的弹性特征,具备较高的拓展性。在智能工厂的建设过程中,对机器视觉系统的要求是,既要降低成本,还要满足快速变化的视觉应用需求。
智能工厂对机器视觉有啥需求?
性能与处理能力。如何提升产能,系统性能与处理能力(throughput)扮演着关键的角色。就一般机器视觉系统而言,高分辨率与高帧率(每秒显示帧数)就像鱼与熊掌一样,不可兼得。在一般实际的应用中,通常是高分辨率但低帧率或低分辨率但高帧率的应用组合。如果想要两者兼得,惟一的出路就是使用高端CPU处理器来补足分辨率与帧率加乘出来的结果。如何以合理的成本,取得最佳的处理性能,是系统开发人员所关心的。
产线环境。工厂的环境通常是较为恶劣的,例如在饮料生产包装的产线,系统可能会直接接触到液体。而在工具机加工的环境中,则是充满切削工件的恶劣环境。如果机器视觉系统必须就近配置在严苛的产线环境中,那么选择具备防水、防尘能力的产品才能达到该需求。
多组生产工作站。在工厂环境中,一个成品的上市,从组件的制造、半成品的取放、质量的检验到出货的包装,必须要经过层层不同的工作站。举例来说,CNC机台负责组件的车削加工,通过工业机器人的取件,通过工业相机让工件定位后,才开始进行工件的切割;完成后进入到检测的站台,进行缺陷检测;过关的成品在包装区进行出货条形码的扫读。多组生产工作站之间,如何让系统之间容易整合与沟通,是工厂是否智能化的一大关键。
软件开发环境。软件解决方案开发的难易度与整合度,是所有导入智能化系统的工程人员心中的一大担忧,也往往是决定项目成败的最重要因素。如何缩短开发时间,降低系统开发成本,是重要的关键。
我国机器视觉发展现状
我国机器视觉行业的起步比较晚,集中度也不是很高,最开始主要是代理国外品牌。近几年,很多的经销商开始自主开发产品,但在行业分布、渠道分销以及成熟的自动化产品等方面还是和国外有一定差距。国内机器视觉的相对成熟的自动化产品质量以及技术含量偏低,市场也远远没有饱和。
机器视觉企业大体可以分为层开发厂商、二次开发厂商和产品代理商。国内机器视觉企业主要为国外机器视觉产品代理商和系统二次开发厂商。目前进入我国机器视觉市场的国外品牌有100多家,我国本土的企业负责销售代理的企业有200多家,专业的系统集成商超过50家。我国真正的专业机器视觉底层厂商凤毛麟角,本土机器视觉系统厂商和机器视觉系统元器件生产商存在缺失。
我国机器视觉的发展趋势
工业4.0离不开智能制造,智能制造离不开机器视觉。机器视觉是实现工业自动化和智能化的必要手段,相当于人类视觉在机器上的延伸。机器视觉具有高度自动化、高效率、高精度和适应较差环境等优点,将在我国工业自动化的实现过程中产生重要作用。
视觉图像技术需要重点构建四大核心能力:
第一,智能识别。海量信息快速收敛,从大量信息中找到关键特征,准确度和可靠度是关键。
第二,智能测量。测量是工业的基础,要求精准度。
第三,智能检测。在测量的基础上,综合分析判断多信息多指标,关键点上是基于复杂逻辑的智能化判断。
第四,智能互联。图像的海量数据在多节点采集互联,同时将人员、设备、生产物资、环境、工艺等等数据互联,衍生出深度学习、智能优化、智能预测等等创新能力,真正展示出工业4.0的威力。
机器视觉的相关产品
一个典型的工业机器视觉系统包括:光源、镜头、相机(包括CCD相机和COMS相机)、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯/输入输出单元等。
(一)机器视觉核心部件:
智能相机:黑白智能相机、线扫描智能相机、彩色智能相机、CMOS智能相机、ID读码器等;
板卡:黑白采集卡、图像压缩/解压板卡、彩色采集卡等;
软件包:图像处理软件、机器视觉工具软件;
配件:工业相机、CMOS相机、CCD相机、面阵相机、行扫描相机、红外相机、1394接口相机;
工业镜头:FA镜头、高分辨率镜头、图像扫描镜头、聚光透镜、远心镜头等;
光源:LED光源、紫外照明系统、红外光源、光纤照明系统等;
辅助产品:传感器、标定块、光栅、垫圈、连线及连接器、电源、底板。
(二)机器视觉辅件:
图像处理系统:光学文字、识别系统、自动化/机器人技术、红外图像系统;
机器视觉集成:字符处理和识别系统、自动化/机器人技术、红外图像系统、烟草、印钞、电子组装、质量检测、自动识别(OCR/OCV)、测量、智能视觉、表面检测、印刷、包装、复杂工业对象视觉在线、汽车制造、车牌、智能交通、生物特征识别、监控、医疗检测、光学检查等系统。
由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。
但是机器视觉技术比较复杂,最大的困难在于人的视觉机制尚不清楚。人可以用内省法描述对某一问题的解题过程,从而用计算机加以模拟。但尽管每一个正常人都是"视觉专家",却不可能用内省法来描述自己的视觉过程。因此建立机器视觉系统是十分困难的任务。
可以预计的是,随着机器视觉技术自身的成熟和发展,它将在现代和未来制造企业中得到越来越广泛的应用。
无人工厂离不开机器视觉
深圳辰视智能科技有限公司是一家集机器视觉、工业智能化于一体的高新技术企业,是由一支中国科学院机器视觉技术研究的精英团队在深圳创立。
辰视智能拥有基于深度学习的三维视觉引导、机器人运动控制、视觉检测、三维建模等方面的核心技术,并研发了机器人三维视觉引导系统 、机器人二维视觉引导系统、三维检测系统、产品外观检测系统等可根据客户需求定制化的智能产品。以高效·低成本·模块化的方式为自动化集成商、自动化设备厂商、机器人厂家提供机器视觉的相关解决方案。
辰视智能致力于技术的不断研究、创新、突破,为合作伙伴提供世界领先的机器视觉产品及技术。
网友评论