美文网首页
TensorFlow基本模型之最近邻

TensorFlow基本模型之最近邻

作者: AI异构 | 来源:发表于2019-02-23 10:55 被阅读0次

    最近邻算法简介

    k近邻模型的核心就是使用一种距离度量,获得距离目标点最近的k个点,根据分类决策规则,决定目标点的分类。[2]

    距离度量(L1范数):


    image

    K值选择:这里k为10。

    分类决策规则:k近邻的分类决策规则是最为常见的简单多数规则,也就是在最近的K个点中,哪个标签数目最多,就把目标点的标签归于哪一类。

    Tensorflow 最近邻

    import numpy as np
    import tensorflow as tf
    

    导入 mnist数据集

    # Import MINST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("./data/", one_hot=True)
    
    Extracting ./data/train-images-idx3-ubyte.gz
    Extracting ./data/train-labels-idx1-ubyte.gz
    Extracting ./data/t10k-images-idx3-ubyte.gz
    Extracting ./data/t10k-labels-idx1-ubyte.gz
    

    构建模型

    # In this example, we limit mnist data
    Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
    Xte, Yte = mnist.test.next_batch(10) #10 for testing
    
    # tf Graph Input
    xtr = tf.placeholder("float", [None, 784])
    xte = tf.placeholder("float", [784])
    
    # Nearest Neighbor calculation using L1 Distance
    # Calculate L1 Distance
    distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices=1)
    # Prediction: Get min distance index (Nearest neighbor)
    pred = tf.argmin(distance, 0)
    

    补充:Tenosrflow中基本算术运算函数:[1]

    • tf.add(x,y,name=None) # 求和运算
    • tf.subtract(x,y,name=None) # 减法运算
    • tf.multiply(x,y,name=None) #乘法运算
    • tf.div(x,y,name=None) #除法运算
    • tf.mod(x,y,name=None) # 取模运算
    • tf.abs(x,name=None) #求绝对值
    • tf.negative(x,name=None) #取负运算(y=-x)
    • tf.sign(x,name=None) #返回符合x大于0,则返回1,小于0,则返回-1
    • tf.reciprocal(x,name=None) #取反运算
    • tf.square(x,name=None) #计算平方
    • tf.round(x,name=None) #舍入最接近的整数
    • tf.pow(x,y,name=None) #幂次方

    训练

    accuracy = 0.
    
    # Initialize the variables (i.e. assign their default value)
    init = tf.global_variables_initializer()
    
    # Start training
    with tf.Session() as sess:
        sess.run(init)
    
        # loop over test data
        for i in range(len(Xte)):
            # Get nearest neighbor
            # 5000个样本点分别和10个测试点计算距离
            nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]})
            print(nn_index)
            # Get nearest neighbor class label and compare it to its true label
            print ("Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \
                "True Class:", np.argmax(Yte[i]))
            # Calculate accuracy
            if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
                accuracy += 1./len(Xte)
        print ("Done!")
        print ("Accuracy:", accuracy)
    
    190
    Test 0 Prediction: 9 True Class: 9
    475
    Test 1 Prediction: 5 True Class: 5
    3152
    Test 2 Prediction: 7 True Class: 7
    2413
    Test 3 Prediction: 2 True Class: 2
    1088
    Test 4 Prediction: 2 True Class: 2
    1427
    Test 5 Prediction: 2 True Class: 2
    4743
    Test 6 Prediction: 7 True Class: 7
    4826
    Test 7 Prediction: 6 True Class: 6
    4099
    Test 8 Prediction: 5 True Class: 5
    2421
    Test 9 Prediction: 5 True Class: 5
    Done!
    Accuracy: 0.9999999999999999
    

    参考

    [1] Tenosrflow中基本算术运算函数

    [2] 统计学习方法——K近邻模型

    相关文章

      网友评论

          本文标题:TensorFlow基本模型之最近邻

          本文链接:https://www.haomeiwen.com/subject/fewuyqtx.html