美文网首页
kafka性能监控之KafkaMetrics Sensor

kafka性能监控之KafkaMetrics Sensor

作者: tracy_668 | 来源:发表于2022-03-27 11:28 被阅读0次

    说起kafka的metrics,很多人应该是即陌生又熟悉,

    熟悉是因为阅读源码的过程中,不可避免地会看到metrics.add()的代码.而陌生是因为metrics仅仅只是辅助功能,并不是kafka主要逻辑的一部分,并不会引起读者太多的关注.

    在这里首先说明一个容易产生误解的地方,不少文章说kafka使用yammers框架来实现性能监控.这么说其实没有问题,因为kafka确实通过yammers向外暴露了接口,可以通过jmx或者grahite来监视各个性能参数.但是kafka内的性能监控比如producer,consumer的配额限制,并不是通过yammer实现的.而是通过自己的一套metrics框架来实现的.

    事实上,kafka有两个metrics包,在看源码的时候很容易混淆

    package kafka.metrics
    
    

    以及

    package org.apache.kafka.common.metrics
    
    

    可以看到这两个包的包名都是metrics,但是他们负责的任务并不相同,而且两个包中的类并没有任何的互相引用关系.可以看作是两个完全独立的包.kafka.mtrics这个包,主要调用yammer的Api,并进行封装,提供给client监测kafka的各个性能参数.而commons.metrics这个包是我这篇文章主要要介绍的,这个包并不是面向client提供服务的,他是为了给kafka中的其他组件,比如replicaManager,PartitionManager,QuatoManager提供调用,让这些Manager了解kafka现在的运行状况,以便作出相应决策的.

    首先metrics第一次被初始化,在kafkaServer的startup()方法中

    metrics = new Metrics(metricConfig, reporters, kafkaMetricsTime, true)
    quotaManagers = QuotaFactory.instantiate(config, metrics, time)
    

    初始化了一个Metrics,并将这个实例传到quotaManagers的构造函数中,这里简单介绍一下quotaManagers.这是kafka中用来限制kafka,producer的传输速度的,比如在config文件下设置producer不能以超过5MB/S的速度传输数据,那么这个限制就是通过quotaManager来实现的.

    回到metrics上,跟进代码.

    public class Metrics implements Closeable {
     ....
     ....
        private final ConcurrentMap<MetricName, KafkaMetric> metrics;
        private final ConcurrentMap<String, Sensor> sensors;
    

    metrics与sensors这两个concurrentMap是Metrics中两个重要的成员属性.那么什么是KafkaMetric,什么是Sensor呢?

    首先分析KafkaMetric

    KafkaMetric实现了Metric接口,可以看到它的核心方法value()返回要监控的参数的值.

    public interface Metric {
    
        /**
         * A name for this metric
         */
        public MetricName metricName();
    
        /**
         * The value of the metric
         */
        public double value();
    
    }
    
    

    那么KafkaMetric又是如何实现value()方法的呢?

    @Override
    public double value() {
        synchronized (this.lock) {
            return value(time.milliseconds());
        }
    }
    
    double value(long timeMs) {
        return this.measurable.measure(config, timeMs);
    }
    
    

    原来value()是通过kafkaMetric中的另一个成员属性measurable完成

    public interface Measurable {
    
        /**
         * Measure this quantity and return the result as a double
         * @param config The configuration for this metric
         * @param now The POSIX time in milliseconds the measurement is being taken
         * @return The measured value
         */
        public double measure(MetricConfig config, long now);
    
    }
    

    其实这边挺绕的,Metrics有kafkaMetric的成员变量,而kafkaMetric又通过Measurable返回要检测的值.打个比方,Metrics好比是汽车的仪表盘,kafkaMetric就是仪表盘上的一个仪表,Measurable就是对真正要检测的组件的一个封装.来看看一个Measrable的简单实现,在sender.java类中.

    metrics.addMetric(m, new Measurable() {
        public double measure(MetricConfig config, long now) {
            return (now - metadata.lastSuccessfulUpdate()) / 1000.0;
        }
    });
    

    可以看到measure的实现就是简单地返回要返回的值,因为是直接在目标类中定义的,所以可以直接获得相应变量的引用.

    介绍完KafkaMetric,接下来介绍Sensor,也就是下面的ConcurrentMap中的Sensor

    private final ConcurrentMap<String, Sensor> sensors;
    
    

    以下是Sensor类的源码

    /**
     * A sensor applies a continuous sequence of numerical values to a set of associated metrics. For example a sensor on
     * message size would record a sequence of message sizes using the {@link #record(double)} api and would maintain a set
     * of metrics about request sizes such as the average or max.
     */
    public final class Sensor {
        //一个kafka就只有一个Metrics实例,这个registry就是对这个Metrics的引用
        private final Metrics registry;
        private final String name;
        private final Sensor[] parents;
        private final List<Stat> stats;
        private final List<KafkaMetric> metrics;
    

    这一段的注释很有意义,从注释中可以看到Sensor的作用不同KafkaMetric. KafkaMetric仅仅是返回某一个参数的值,而Sensor有基于某一参数时间序列进行统计的功能,比如平均值,最大值,最小值.那这些统计又是如何实现的呢?答案是List<Stat> stats这个属性成员.

    public interface Stat {
    
        /**
         * Record the given value
         * @param config The configuration to use for this metric
         * @param value The value to record
         * @param timeMs The POSIX time in milliseconds this value occurred
         */
        public void record(MetricConfig config, double value, long timeMs);
    
    }
    
    

    可以看到Stat是一个接口,其中有一个record方法可以记录一个采样数值,下面看一个例子,max这个功能如何用Stat来实现?

    public final class Max extends SampledStat {
    
        public Max() {
            super(Double.NEGATIVE_INFINITY);
        }
    
        @Override
        protected void update(Sample sample, MetricConfig config, double value, long now) {
            sample.value = Math.max(sample.value, value);
        }
    
        @Override
        public double combine(List<Sample> samples, MetricConfig config, long now) {
            double max = Double.NEGATIVE_INFINITY;
            for (int i = 0; i < samples.size(); i++)
                max = Math.max(max, samples.get(i).value);
            return max;
        }
    
    }
    

    是不是很简单,update相当于冒一次泡,把当前的值与历史的最大值比较.combine相当于用一次完整的冒泡排序找出最大值,需要注意的是,max是继承SampleStat的,而SampleStat是Stat接口的实现类.那我们回到Sensor类上来.

    public void record(double value, long timeMs) {
        this.lastRecordTime = timeMs;
        synchronized (this) {
            // increment all the stats
            for (int i = 0; i < this.stats.size(); i++)
                this.stats.get(i).record(config, value, timeMs);
            checkQuotas(timeMs);
        }
        for (int i = 0; i < parents.length; i++)
            parents[i].record(value, timeMs);
    }
    

    record方法,每个注册于其中的stats提交值,同时如果自己有父sensor的话,向父sensor提交.

    public void checkQuotas(long timeMs) {
        for (int i = 0; i < this.metrics.size(); i++) {
            KafkaMetric metric = this.metrics.get(i);
            MetricConfig config = metric.config();
            if (config != null) {
                Quota quota = config.quota();
                if (quota != null) {
                    double value = metric.value(timeMs);
                    if (!quota.acceptable(value)) {
                        throw new QuotaViolationException(
                            metric.metricName(),
                            value,
                            quota.bound());
                    }
                }
            }
        }
    }
    
    

    checkQuotas,通过这里其实是遍历注册在sensor上的每一个KafkaMetric来检查他们的值有没有超过config文件中设置的配额.注意这里的QuotaVioLationException,是不是很熟悉.在QuatoManager中,如果有一个client的上传/下载速度超过指定配额.那么就会抛出这个异常

    try {
      clientSensors.quotaSensor.record(value)
      // trigger the callback immediately if quota is not violated
      callback(0)
    } catch {
      case qve: QuotaViolationException =>
        // Compute the delay
        val clientMetric = metrics.metrics().get(clientRateMetricName(clientQuotaEntity.sanitizedUser, clientQuotaEntity.clientId))
        throttleTimeMs = throttleTime(clientMetric, getQuotaMetricConfig(clientQuotaEntity.quota))
        clientSensors.throttleTimeSensor.record(throttleTimeMs)
        // If delayed, add the element to the delayQueue
        delayQueue.add(new ThrottledResponse(time, throttleTimeMs, callback))
        delayQueueSensor.record()
        logger.debug("Quota violated for sensor (%s). Delay time: (%d)".format(clientSensors.quotaSensor.name(), throttleTimeMs))
    }
    
    

    最后,Sensor会初始化一个线程专门用来清除长时间没有使用的Sensor.这个线程名为"SensorExpiryThread"

    class ExpireSensorTask implements Runnable {
        public void run() {
            for (Map.Entry<String, Sensor> sensorEntry : sensors.entrySet()) {
                // removeSensor also locks the sensor object. This is fine because synchronized is reentrant
                // There is however a minor race condition here. Assume we have a parent sensor P and child sensor C.
                // Calling record on C would cause a record on P as well.
                // So expiration time for P == expiration time for C. If the record on P happens via C just after P is removed,
                // that will cause C to also get removed.
                // Since the expiration time is typically high it is not expected to be a significant concern
                // and thus not necessary to optimize
                synchronized (sensorEntry.getValue()) {
                    if (sensorEntry.getValue().hasExpired()) {
                        log.debug("Removing expired sensor {}", sensorEntry.getKey());
                        removeSensor(sensorEntry.getKey());
                    }
                }
            }
        }
    
    

    相关文章

      网友评论

          本文标题:kafka性能监控之KafkaMetrics Sensor

          本文链接:https://www.haomeiwen.com/subject/fgnejrtx.html