opencv图像平滑

作者: Zoe_C | 来源:发表于2018-04-28 12:57 被阅读120次

1.  2D卷积  cv.filter2D()

对于一维信号,还可以使用各种低通滤波器( LPF )、高通滤波器( HPF )等对图像进行滤波。LPF有助于消除噪声或模糊图像。HPF滤镜有助于在图像中查找边缘。OpenCV提供了一个函数cv2.filter2d ( ),用于将内核与图像进行卷积。例如,我们将尝试对图像进行平均滤波。5x 5平均滤波器内核定义如下

操作如下:将核放在图像的一个像素 A 上,求与核对应的图像上 25(5x5)个像素的和,在取平均数,用这个平均数替代像素 A 的值。重复以上操作直到将图像的每一个像素值都更新一边。

img = cv2.imread('opencv_logo.jpg')

kernel = np.ones((5,5),np.float32)/25

dst = cv2.filter2D(img,-1,kernel)

plt.subplot(121),plt.imshow(img),plt.title('Original')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(dst),plt.title('Averaging')

plt.xticks([]), plt.yticks([])

plt.show()

2.   图像模糊(图像平滑)

使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。OpenCV 提供了四种模糊技术。

2.1 平均   cv2.blur()   cv2.boxFilter()

这是由一个归一化卷积框完成的。他只是用卷积框覆盖区域所有像素的平均值来代替中心元素。可以使用函数 cv2.blur() 和 cv2.boxFilter() 来完这个任务。可以同看查看文档了解更多卷积框的细节。我们需要设定卷积框的宽和高。下面是一个 3x3 的归一化卷积框:

PS:如果不想使用归一化卷积框,应该使用 cv2.boxFilter(),这时要传入参数 normalize=False。

blur = cv2.blur(img,(5,5))

2.2  高斯模糊   cv2.GaussianBlur()

现在把卷积核换成高斯核(简单来说,方框不变,将原来每个方框的值是相等的,现在里面的值是符合高斯分布的,方框中心的值最大,其余方框根据距离中心元素的距离递减,构成一个高斯小山包。原来的求平均数现在变成求加权平均数,全就是方框里的值)。实现的函数是 cv2.GaussianBlur()。我们需要指定高斯核的宽和高(必须是奇数)。以及高斯函数沿 X,Y 方向的标准差。如果我们只指定了 X 方向的的标准差,Y 方向也会取相同值。如果两个标准差都是 0,那么函数会根据核函数的大小自己计算。高斯滤波可以有效的从图像中去除高斯噪音。如果你愿意的话,你也可以使用函数 cv2.getGaussianKernel() 自己构建一个高斯核。

如果要使用高斯模糊的话,上边的代码应该写成:

blur = cv2.GaussianBlur(img,(5,5),0)

2.3  中值模糊 cv2.medianBlur()

顾名思义就是用与卷积框对应像素的中值来替代中心像素的值。这个滤波器经常用来去除椒盐噪声。前面的滤波器都是用计算得到的一个新值来取代中心像素的值,而中值滤波是用中心像素周围(也可以使他本身)的值来取代它。它能有效的去除噪声。卷积核的大小也应该是一个奇数。

median = cv2.medianBlur(img,5)

2.4  双边滤波  cv2.bilateralFilter()

函数 cv2.bilateralFilter() 能在保持边界清晰的情况下有效的去除噪音。但是这种操作与其他滤波器相比会比较慢。我们已经知道高斯滤波器是求中心点邻近区域像素的高斯加权平均值。这种高斯滤波器只考虑像素之间的空间关系,而不会考虑像素值之间的关系(像素的相似度)。所以这种方法不会考虑一个像素是否位于边界。因此边界也会别模糊掉,而这正不是我们想要。双边滤波在同时使用空间高斯权重和灰度值相似性高斯权重。空间高斯函数确保只有邻近区域的像素对中心点有影响,灰度值相似性高斯函数确保只有与中心像素灰度值相近的才会被用来做模糊运算。所以这种方法会确保边界不会被模糊掉,因为边界处的灰度值变化比较大。

blur = cv2.bilateralFilter(img,9,75,75)   #9 邻域直径,两个 75 分别是空间高斯函数标准差,灰度值相似性高斯函数标准差

相关文章

  • OpenCV 之ios 图像平滑处理

    OpenCV 之ios 图像平滑处理 目标 本教程教您怎样使用各种线性滤波器对图像进行平滑处理,相关OpenCV函...

  • Python+OpenCV教程10:平滑图像

    主站:http://ex2tron.wang原文:Python+OpenCV教程10:平滑图像 学习模糊/平滑图像...

  • opencv在android平台下的开发【4】-图像滤波详解

    前言 在上一篇opencv-android-图像平滑处理文章中,简单介绍了几种图像平滑,也就是图像模糊的方法,使用...

  • opencv图像平滑

    1. 2D卷积cv.filter2D() 对于一维信号,还可以使用各种低通滤波器( LPF )、高通滤波器( HP...

  • Opencv中图像噪声与图像平滑

    图像噪声 由于图像采集、处理等过程都存在一定的误差而存在响应的噪声。其中,噪声包括高斯噪声、均匀分布噪声、脉冲噪声...

  • OpenCV边缘检测常规步骤

    OpenCV边缘检测 一、基本步骤 1.平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声。 2.计算...

  • openCV:图像的平滑去噪

    基本概念 高频信息与低频信息 低频就是颜色缓慢变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域。相反高频...

  • OpenCV C++(五)----图像平滑

    每一幅图像都包含某种程度的噪声,噪声可以理解为由一种或者多种原因造成的灰 度值的随机变化,如由光子通量的随机性造成...

  • opencv-android-图像平滑处理

    基本概念图像的平滑也就是图像的模糊处理,简单但是使用频率很高,在执行许多高级处理之前都需要先进性图像的平滑处理,以...

  • OpenCV学习笔记(六)方框、均值、高斯滤波

    一、图像平滑与滤波概念 介绍图像滤波之前有必要了解一下图像平滑的概念。 图像平滑(smoothing)也称为图像模...

网友评论

    本文标题:opencv图像平滑

    本文链接:https://www.haomeiwen.com/subject/fifglftx.html