可视化网络每一层输出









从网络每一层输出的激活可以看出随着网络加深,提取到的特征也越来月抽象。
可视化卷积核
不同卷积核对不同特征的敏感程度不同,通过可gradient descent 算法可以看卷积核对什么样的输入有最大的response,从而可视化卷积核。











from keras.models import load_model
from keras.models import Model
from keras.models import Input
from keras import backend as K
from keras.preprocessing import image
from keras.applications.vgg16 import VGG16
import numpy as np
import matplotlib.pyplot as plt
model = load_model("cat_dog_classification/tuneModel.h5")
model.summary()
img_path = "/Users/yuhua.cheng/Documents/study/Keras/cat_dog_classification/data/test/9999.jpg"
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
img_tensor /= 255.
# visualize activations
layer_outputs = [layer.output for layer in model.layers[1:16]]
activation_model = Model(inputs=model.input, outputs=layer_outputs)
activations = activation_model.predict(x=img_tensor, batch_size=1)
layer_names = []
for layer in model.layers[1:16]:
layer_names.append(layer.name)
images_per_row = 16
for layer_name, layer_activation in zip(layer_names, activations):
n_features = layer_activation.shape[-1]
size = layer_activation.shape[1]
n_cols = n_features // images_per_row
display_grid = np.zeros((size*n_cols, images_per_row*size))
for col in range(n_cols):
for row in range(images_per_row):
channel_image = layer_activation[0,:,:,col*images_per_row + row]
channel_image -= channel_image.mean()
channel_image /= channel_image.std()
channel_image *= 64
channel_image += 128
channel_image = np.clip(channel_image, 0, 255).astype('uint8')
display_grid[col*size:(col+1)*size, row*size:(row+1)*size] = channel_image
scale = 1./size
plt.figure(figsize=(scale*display_grid.shape[1], scale*display_grid.shape[0]))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')
plt.savefig(layer_name)
plt.show()
# visualize kernels
def deprocess_image(x):
x -= x.mean();
x /= (x.std() + 1e-5)
x *= 0.1
x += 0.5
x = np.clip(x, 0, 1)
x *= 255
x = np.clip(x, 0, 255).astype('uint8')
# print("x:", x)
return x
def generate_pattern(layer_name, filter_index, size=150):
layer_output = model.get_layer(layer_name).output
loss = K.mean(layer_output[:,:,:,filter_index])
grads = K.gradients(loss, model.input)[0]
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
iterate = K.function([model.input], [loss, grads])
input_img_data = np.random.random((1, size, size, 3))*20 + 128
step = 1
for i in range(40):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value*step
img = input_img_data[0]
# print("img:",img)
return deprocess_image(img)
for layer_name in layer_names:
size = 64
margin = 5
results = np.zeros((8*size + 7*margin, 8*size + 7*margin, 3), dtype='uint8')
for i in range(8):
for j in range(8):
filter_img = generate_pattern(layer_name, i+(j*8), size=size)
# print("filter_img:", filter_img)
horizontal_start = i*size + i*margin
horizontal_end = horizontal_start + size
vertical_start = j*size + j*margin
vertical_end = vertical_start + size
results[horizontal_start: horizontal_end, vertical_start:vertical_end,:] = filter_img
# print("sum of results:", np.sum(results))
# print(results.dtype)
plt.figure(figsize=(20,20))
plt.imshow(results)
plt.savefig(layer_name)
plt.show()
网友评论