HashMap

作者: Elf_乐易 | 来源:发表于2018-02-27 11:51 被阅读0次

    引言

    JDK1.8 HashMap学习
    集合中List与Set都继承自Collection接口,而Map并没有继承Collenction接口,它是一种key-value映射形式的数据结构,不能有重复的key,并且一个key只能有一个value。

    An object that maps keys to values. A map cannot contain duplicate keys;
    each key can map to at most one value.

    HashMap是Map中最常用的实现。

    1. 它包含了map接口提供的所有操作,并且允许 NULL 作为key和value;
    2. 不是线程安全的,并且无序;
    3. HashMap与HashTbale相似,区别仅在于HashMap非线程安全,且允许null;

    JDK1.8对哈希碰撞后的拉链算法进行了优化, 当拉链上entry数量太多(默认为超过8个)时,将链表重构为红黑树。当entry数量减少到一定数量(默认值为6)时,数据结构会重新变成链表。

         * This map usually acts as a binned (bucketed) hash table, but
         * when bins get too large, they are transformed into bins of
         * TreeNodes, each structured similarly to those in
         * java.util.TreeMap. Most methods try to use normal bins, but
         * relay to TreeNode methods when applicable (simply by checking
         * instanceof a node).  Bins of TreeNodes may be traversed and
         * used like any others, but additionally support faster lookup
         * when overpopulated. However, since the vast majority of bins in
         * normal use are not overpopulated, checking for existence of
         * tree bins may be delayed in the course of table methods.
         
         * Because TreeNodes are about twice the size of regular nodes, we
         * use them only when bins contain enough nodes to warrant use
         * (see TREEIFY_THRESHOLD). And when they become too small (due to
         * removal or resizing) they are converted back to plain bins.  In
         * usages with well-distributed user hashCodes, tree bins are
         * rarely used.  Ideally, under random hashCodes, the frequency of
         * nodes in bins follows a Poisson distribution
    

    静态默认值

    默认初始化容量位16,并且容量只能是2的倍数
    /**
         * The default initial capacity - MUST be a power of two.
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
    最大允许容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    默认装载因子0.75
    /**
         * The load factor used when none specified in constructor.
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    

    即默认的HashMap实例在插入第13个数据时,会扩容为32。
    类注释中明确说明了影响Map性能的两个元素,一个是过高的初始容量,一个是过低的装载因子。而0.75是时间和空间上的一个最佳实践。

     * <p>This implementation provides constant-time performance for the basic
     * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
     * disperses the elements properly among the buckets.  Iteration over
     * collection views requires time proportional to the "capacity" of the
     * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
     * of key-value mappings).  Thus, it's very important not to set the initial
     * capacity too high (or the load factor too low) if iteration performance is
     * important.
    
    由链表重构为红黑树阈值,默认为8
     /**
         * The bin count threshold for using a tree rather than list for a
         * bin.  Bins are converted to trees when adding an element to a
         * bin with at least this many nodes. The value must be greater
         * than 2 and should be at least 8 to mesh with assumptions in
         * tree removal about conversion back to plain bins upon
         * shrinkage.
         */
        static final int TREEIFY_THRESHOLD = 8;
    
    由红黑树变为链表阈值,默认为6
    /**
         * The bin count threshold for untreeifying a (split) bin during a
         * resize operation. Should be less than TREEIFY_THRESHOLD, and at
         * most 6 to mesh with shrinkage detection under removal.
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
    树形结构的最小容量,默认为64
     /**
         * The smallest table capacity for which bins may be treeified.
         * (Otherwise the table is resized if too many nodes in a bin.)
         * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
         * between resizing and treeification thresholds.
         */
        static final int MIN_TREEIFY_CAPACITY = 64;
    

    主要属性

    table,数据表,在初次使用时初始化,length是2的倍数
     /**
         * The table, initialized on first use, and resized as
         * necessary. When allocated, length is always a power of two.
         * (We also tolerate length zero in some operations to allow
         * bootstrapping mechanics that are currently not needed.)
         */
        transient Node<K,V>[] table;
        
    
    table开始装载的值
     /**
         * The next size value at which to resize (capacity * load factor).
         *
         * @serial
         */
        int threshold;
    
    其他属性
    transient Set<Map.Entry<K,V>> entrySet;
    transient int size;
    transient int modCount;
    final float loadFactor;
    

    主要方法

    构造方法

    HashMap中有四类构造方法,分别是不传参,传递初始化容量,传递初始化容量和装载因子,传入map

     public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
        
     public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
     public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
     public HashMap(Map<? extends K, ? extends V> m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
    put

    通常我们使用put(key, value)方法来设置值,其实内部实现是putVal方法

    public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    

    putVal方法为final方法,有更多的参数

    /**
         * Implements Map.put and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
    

    putVal第一个if即如果table为空,则通过resize方法初始化table

     ...
     if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
     ...
     
     final Node<K,V>[] resize() {
          Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            
            ....
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            ....
            
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
                Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            
            ....
     }
    

    putVal第二个if则是通过key的hash值判断当前的hash所在数组位置是否有值,如果为null,则直接newNode

    ...
    if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
    ...
    

    putVal接下来的else是该方法中的主要部分,else开始时,p为putVal方法开始根据key的hash值所得的数组位置的内容

    1. 如果p的hash,key与参数列表中的相同,则直接将p赋值个e,条件判断结束;
    2. 1不成立,则判断p是否为树形结构,如果为树形结构,则走树形结果方法,条件判断结束;
    3. 如果1、2都成立,则循环所有列表数据。如果结束前,找到符合条件1的,则走1同样的流程,直至最后p.next为null,此时新建节点插入,并赋值给e,条件判断结束;
    4. 如果e不为null,并且onlyIfAbsent为false(即允许覆盖原值),或者原值为null,则覆盖原来的value为新value,回原来的value值;afterNodeAccess该方法为LinkedHashMap的后续操作;
      注意:循环中binCount >= TREEIFY_THRESHOLD - 1表示,当哈希表大小超过最小树限制时,将map转为树,进行树操作,这样当下次在put时,直接走上述第2条数操作
    ...
     else {
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
    ...
    

    方法最后,主要判断如果数组大小超过转载值,则扩充容量

    ...
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
    ...
    
    get

    通常我们使用的都是通过key来get value的方法,其实内部都是使用getNode方法

    public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    

    getNode方法主要完成以下几步:

    1. 根据key的has值得到map数组位置的node,如果node的key与传入的key相同,则返回node;
    2. node.next为空,则返回null,否则如果树,则走树形方法,不是树,则开始循环查找;
    final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    

    待续

    相关文章

      网友评论

          本文标题:HashMap

          本文链接:https://www.haomeiwen.com/subject/fjvpxftx.html