1. 图的表示
import Data.Array
import Data.Ix
-- adjacency matrix representation
type Graph n w = Array (n, n) (Maybe w)
mkGraph :: (Ix n, Num w) => Bool -> (n, n) -> [(n, n, w)] -> (Graph n w)
mkGraph dir bnds@(l, u) es =
emptyArray // ([((x1, x2), Just w) | (x1, x2, w) <- es] ++
if dir then []
else [((x2, x1), Just w) | (x1, x2, w) <- es, x1 /= x2])
where emptyArray =
array ((l, l), (u, u))
[((x1, x2), Nothing) | x1 <- range bnds, x2 <- range bnds]
adjacent g v1 = [v2 | v2 <- nodes g, (g!(v1, v2)) /= Nothing]
nodes g = range (l, u)
where ((l, _), (u, _)) = bounds g
edgeIn g (x, y) = (g!(x, y)) /= Nothing
weight x y g = w
where (Just w) = g!(x, y)
edgesD g = [(v1, v2, unwrap $ g!(v1, v2)) |
v1 <- nodes g,
v2 <- nodes g,
edgeIn g (v1, v2)]
where unwrap (Just w) = w
edgesU g = [(v1, v2, unwrap $ g!(v1, v2)) |
v1 <- nodes g,
v2 <- range (v1, u),
edgeIn g (v1, v2)]
where (_, (u, _)) = bounds g
unwrap (Just w) = w
2. 用例
testGraph = mkGraph False (1, 5)
[(1, 2, 12), (1, 3, 34), (1, 5, 78),
(2, 4, 55), (2, 5, 32), (3, 4, 61),
(3, 5, 44), (4, 5, 93)]
testAdjacent = adjacent testGraph 1
-- [2,3,5]
testNodes = nodes testGraph
-- [1,2,3,4,5]
testEdgeIn = edgeIn testGraph (1, 2)
-- True
testWeight = weight 1 2 testGraph
-- 12
testEdgesD = edgesD testGraph
-- [(1,2,12),(1,3,34),(1,5,78),(2,1,12),(2,4,55),(2,5,32),(3,1,34),(3,4,61),(3,5,44),(4,2,55),(4,3,61),(4,5,93),(5,1,78),(5,2,32),(5,3,44),(5,4,93)]
testEdgesU = edgesU testGraph
-- [(1,2,12),(1,3,34),(1,5,78),(2,4,55),(2,5,32),(3,4,61),(3,5,44),(4,5,93)]
参考
Algorithms: A Functional Programming Approach
网友评论