朴素贝叶斯

作者: 我可是小学生 | 来源:发表于2017-07-27 15:37 被阅读0次

       要求分类器做出艰难决策,给出该数据实例属于哪一类,这类问题的明确答案。不过分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值。从一个最简单的概率分类器开始,然后给出一些假设来学习朴素贝叶斯分类器。我们称之为“朴素”,是因为整个形式化过程只做最原始、最简单的假设。

       现在用p1(x,y)表示数据点(x,y)属于类别1的概率,用p2(x,y)表示数据点(x,y)属于类别2的概率,那么,可以用下面的规则来判断它的类别:

                                               如果p1(x,y) > p2(x,y),那么类别为1

                                               如果p2(x,y) > p1(x,y),那么类别为2

       也就是说我们会选择高概率对应的类别。这是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

        贝叶斯准则告诉我们如何交换条件概率中的条件和结果,即如果已知p(x|c),要求p(c|x),那么可以使用下面的计算方法:

相关文章

  • 算法笔记(7)-朴素贝叶斯算法及Python代码实现

    朴素贝叶斯算法有三种类型,分别是贝努利朴素贝叶斯、高斯贝叶斯、多项式朴素贝叶斯。 贝叶斯公式 贝努利朴素贝叶斯 适...

  • 朴素贝叶斯法

    朴素贝叶斯法 朴素贝叶斯法的学习与分类 朴素贝叶斯法的参数估计 朴素贝叶斯实现 高斯朴素贝叶斯实现 使用 skle...

  • 朴素贝叶斯(NBM)之后验概率最大化的含义 | 统计学习方法

    朴素贝叶斯 - 贝叶斯估计Python复现: 舟晓南:朴素贝叶斯(Bayes)模型python复现 - 贝叶斯估计...

  • 朴素贝叶斯算法介绍及优化

    朴素贝叶斯(Naive Bayes) 贝叶斯公式 朴素贝叶斯算法其实原理很简单,要理解朴素贝叶斯算法我们首先得知道...

  • 朴素贝叶斯法(NaiveBayes)

    朴素贝叶斯法(Naive Bayes) 朴素贝叶斯法是基于贝叶斯定力和特征条件独立假设的分类方法。 朴素贝叶斯法实...

  • 朴素贝叶斯算法

    问题 1. 什么是朴素贝叶斯 2. 怎么理解贝叶斯公式和朴素贝叶斯公式 3. 朴素贝叶斯算法流程是怎样...

  • 深度学习知识点汇总-机器学习基础(6)

    2.6 逻辑回归与朴素贝叶斯有什么区别? 逻辑回归是判别模型, 朴素贝叶斯是生成模型。 朴素贝叶斯属于贝叶斯,逻辑...

  • 朴素贝叶斯

    朴素贝叶斯 用处:朴素贝叶斯主要解决的是而分类的问题。 为什么叫朴素贝叶斯: 因为贝叶斯分类只做最原始,最简单的假...

  • sklearn-朴素贝叶斯

    朴素贝叶斯分为三种:高斯朴素贝叶斯、多项式朴素贝叶斯、伯努利朴素贝叶斯。这三种的不同之处在于求条件概率的公式不同。...

  • 第五周 - 20180507

    朴素贝叶斯的思路及实现 一、朴素贝叶斯简介 朴素贝叶斯法(Naive Bayes)是基于贝叶斯定理与特征条件独立假...

网友评论

    本文标题:朴素贝叶斯

    本文链接:https://www.haomeiwen.com/subject/fmdqnttx.html