美文网首页
功能强大的python包(一):Numpy

功能强大的python包(一):Numpy

作者: 可爱多多少 | 来源:发表于2021-07-10 11:19 被阅读0次

功能强大的python包(一):Numpy

1.Numpy简介

Numpy图标

Numpy是python的一种开源的数值计算扩展;Numpy可用来存储和处理大型矩阵;Numpy支持大量的维度数组与矩阵运算。

2.数据类型

Numpy最基本最常用的数据类型是ndarray(n维数组),其中的很多方法也是针对ndarray对象而开发的;其与python自带数据类型list(列表)基本无差别;因此对于list对象的操作都可以运用到ndarray对象上。

3.Numpy总览

Numpy思维导图
数据生成

生成ndarray对象的方法汇总

函数 实例
np.array np.array([1,2,3,4,5])
np.arange np.arange(1,10)
np.linspace np.linspace(1,10,10)
np.ones np.ones((2,2))
np.ones_like np.ones_like([[1,2,3],[3,2,1]])
np.zeros np.zeros((3,2))
np.zeros_like np.zeros_like([[3,2,1],[1,2,3]])
np.empty np.empty((3,4))
np.empty_like np.empty_like([[1,2,3],[3,2,1]])
import numpy as np

np.array([1,2,3,4,5])
np.arange(1,10)
np.linspace(1,10,10)
np.ones((2,2))
np.ones_like([[1,2,3],[3,2,1]])
np.zeros((3,2))
np.zeros_like([[3,2,1],[1,2,3]])
np.empty((3,4))
np.empty_like([[1,2,3],[3,2,1]])

数据结构
函数 实例
np.size np.size(np.ones((3,4)))
np.shape np.shape(np.ones((3,4)))
np.split np.split(np.ones((3,4)),1)
np.reshape np.ones((3,4)).reshape(2,6)
np.concatenate np.concatenate(ones((3,4)))
np.transpose np.ones((3,4)).transpose( )
import numpy as np

np.size(np.ones((3,4)))
np.shape(np.ones((3,4)))
np.split(np.ones((3,4)),1)
np.ones((3,4)).reshape(2,6)
np.concatenate(ones((3,4)))
np.ones((3,4)).transpose( )

np.random

np.random模块可以用于生成呈各种分布的数据

函数 实例
np.random.rand np.random.rand(2,3)
np.random.randn np.random.randn(3,4)
np.random.gamma np.random.gamma(3,10)
np.random.normal np.random.normal(0,1)
np.random.randint np.random.randint(0,10,10)
import numpy as np

np.random.rand(2,3)
np.random.randn(3,4)
np.random.gamma(3,10)
np.random.normal(0,1)
np.random.randint(0,10,10)

数值计算
函数 实例
np.sin np.sin(10)
np.cos np.cos(60)
np.exp np.exp(4)
np.power np.power(2,3)
import numpy as np

np.sin(10)
np.cos(60)
np.exp(4)
np.power(2,3)

数据分析
函数 实例
np.abs np.abs(np.arange(-5,4))
np.sum np.sum([1,2,3])
np.var np.var([1,2,3])
np.std np.std([1,2,3])
np.mean np.mean([1,2,3])
np.sqrt np.sqrt([4,9,16])
np.floor np.floor([2.1,3.7,4.3])
np.ceil np.ceil([2,1,3.7,4.3])
np.median np.median([3,2,4])
np.cumsum np.cumsum([[1,2,3],[3,2,1]])
np.cumprod np.cumprod([[1,2,3],[3,2,1]])
import numpy as np

np.abs(np.arange(-5,4))
np.sum([1,2,3])
np.var([1,2,3])
np.std([1,2,3])
np.mean([1,2,3])
np.sqrt([4,9,16])
np.floor([2.1,3.7,4.3])
np.ceil([2,1,3.7,4.3])
np.cumsum([[1,2,3],[3,2,1]])
np.cumprod([[1,2,3],[3,2,1]])

索引
函数 实例
np.argmin np.argmin([4,2,1,6,8])
np.argmax np.argmax([4,2,1,6,8])
import numpy as np

np.argmin([4,2,1,6,8])
np.argmax([4,2,1,6,8])

Ending

相关文章

  • 功能强大的python包(一):Numpy

    功能强大的python包(一):Numpy 1.Numpy简介 Numpy是python的一种开源的数值计算扩展;...

  • python计算基础

    Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一...

  • Python数据分析与机器学习2-Numpy

    一. Numpy工具包介绍 NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它...

  • NumPy API 目录

    NumPy API 目录 NumPy是一个功能强大的Python库,主要用于对多维数组执行计算。NumPy这个词来...

  • numpy 使用

    1. 什么是 NumPy? NumPy是一个功能强大的Python库,主要用于对多维数组执行计算。NumPy这个词...

  • Numpy

    NumPy是Numeric Python的简称 NumPy是Python科学计算的基础工具包 NumPy是Pyth...

  • Numpy | 基础操作(矩阵)

    NumPy 基础操作 什么是 NumPy NumPy是Python中科学计算的基础包。它是一个Python库,提供...

  • 深度学习之Numpy整理

    一、Numpy介绍、为什么要用Numpy 1、Numpy介绍 Numpy是Python的一个扩展包,语法和Matl...

  • 2.1-Numpy库

    Numpy库介绍NumPy是一个功能强大的Python库,主要用于对多维数组执行计算。NumPy这个词来源于两个单...

  • numpy

    Numpy概述 NumPy(Numerical Python的简称)是Python数值计算最重要的基础包。大多数提...

网友评论

      本文标题:功能强大的python包(一):Numpy

      本文链接:https://www.haomeiwen.com/subject/foofpltx.html