分类-Category
分类的功能
在OC中,我们可以使用分类为类添加方法,属性.也可以覆盖类原有的方法,自己添加新的实现.(说是覆盖,其实不然.在稍后分类加载时间会解释原因)
分类的结构
const char *name;
classref_t cls;
WrappedPtr<method_list_t, PtrauthStrip> instanceMethods;
WrappedPtr<method_list_t, PtrauthStrip> classMethods;
struct protocol_list_t *protocols;
struct property_list_t *instanceProperties;
// Fields below this point are not always present on disk.
struct property_list_t *_classProperties;
method_list_t *methodsForMeta(bool isMeta) {
if (isMeta) return classMethods;
else return instanceMethods;
}
property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
protocol_list_t *protocolsForMeta(bool isMeta) {
if (isMeta) return nullptr;
else return protocols;
}
};
从源码可以看出,分类是名为 category_t 的结构体类型数据.
category_t的成员
- instanceMethods:实例方法
- classMethods:类方法
- protocols:协议
- instanceProperties:实例属性
- _classProperties:类属性
分类的加载顺序
分析iOS App启动时的一系列方法,可以看到分类的加载规则.下面是一系列经过的方法
_objc_init ==> map_images ==> map_images_nolock ==> _read_images ==> remethodizeClass ==> attachCategories
_read_images
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
for (EACH_HEADER) {
if (! mustReadClasses(hi)) {
// Image is sufficiently optimized that we need not call readClass()
continue;
}
bool headerIsBundle = hi->isBundle();
bool headerIsPreoptimized = hi->isPreoptimized();
classref_t *classlist = _getObjc2ClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = (Class)classlist[i];
Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
if (newCls != cls && newCls) {
// Class was moved but not deleted. Currently this occurs
// only when the new class resolved a future class.
// Non-lazily realize the class below.
resolvedFutureClasses = (Class *)
realloc(resolvedFutureClasses,
(resolvedFutureClassCount+1) * sizeof(Class));
resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
}
}
}
// Discover protocols. Fix up protocol refs.
for (EACH_HEADER) {
extern objc_class OBJC_CLASS_$_Protocol;
Class cls = (Class)&OBJC_CLASS_$_Protocol;
assert(cls);
NXMapTable *protocol_map = protocols();
bool isPreoptimized = hi->isPreoptimized();
bool isBundle = hi->isBundle();
protocol_t **protolist = _getObjc2ProtocolList(hi, &count);
for (i = 0; i < count; i++) {
readProtocol(protolist[i], cls, protocol_map,
isPreoptimized, isBundle);
}
}
// Discover categories. Only do this after the initial category
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes. rdar://problem/53119145
if (didInitialAttachCategories) {
for (EACH_HEADER) {
load_categories_nolock(hi);
}
}
// Realize non-lazy classes (for +load methods and static instances)
for (EACH_HEADER) {
classref_t const *classlist = hi->nlclslist(&count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
if (!cls) continue;
addClassTableEntry(cls);
if (cls->isSwiftStable()) {
if (cls->swiftMetadataInitializer()) {
_objc_fatal("Swift class %s with a metadata initializer "
"is not allowed to be non-lazy",
cls->nameForLogging());
}
// fixme also disallow relocatable classes
// We can't disallow all Swift classes because of
// classes like Swift.__EmptyArrayStorage
}
realizeClassWithoutSwift(cls, nil);
}
}
从_read_images方法中,我摘抄了部分代码.从这一部分代码,我们可以看到类的加载顺序.
-
Discover classes. Fix up unresolved future classes. Mark bundle classes.
-
Discover protocols. Fix up protocol refs.
-
Discover categories.===> load_categories_nolock但是很明显.这里有一个个判断值didInitialAttachCategories.通过源码看到.这个值一开始为false.所以这时并未加载分类.
-
继续往下走.会发现有一种情况.就是non-lazy classes会调用realizeClassWithoutSwift方法,方法内部会调用methodizeClass在内部使用objc::unattachedCategories.attachToClass 将分类与类连接上.
void
load_images(const char *path __unused, const struct mach_header *mh)
{
if (!didInitialAttachCategories && didCallDyldNotifyRegister) {
didInitialAttachCategories = true;
loadAllCategories();
}// Return without taking locks if there are no +load methods here. if (!hasLoadMethods((const headerType *)mh)) return; recursive_mutex_locker_t lock(loadMethodLock); // Discover load methods { mutex_locker_t lock2(runtimeLock); prepare_load_methods((const headerType *)mh); } // Call +load methods (without runtimeLock - re-entrant) call_load_methods();
}
static void loadAllCategories() {
mutex_locker_t lock(runtimeLock);for (auto *hi = FirstHeader; hi != NULL; hi = hi->getNext()) { load_categories_nolock(hi); }
}
load_categories_nolock
static void load_categories_nolock(header_info *hi) {
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
size_t count;
auto processCatlist = [&](category_t * const *catlist) {
for (unsigned i = 0; i < count; i++) {
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls);
locstamped_category_t lc{cat, hi};
// First, register the category with its target class.
// Then, rebuild the class's method lists (etc) if
// the class is realized.
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
if (cls->isRealized()) {
attachCategories(cls, &lc, 1, ATTACH_EXISTING);
} else {
objc::unattachedCategories.addForClass(lc, cls);
}
}
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
if (cls->ISA()->isRealized()) {
attachCategories(cls->ISA(), &lc, 1, ATTACH_EXISTING | ATTACH_METACLASS);
} else {
objc::unattachedCategories.addForClass(lc, cls->ISA());
}
}
}
};
processCatlist(_getObjc2CategoryList(hi, &count));
processCatlist(_getObjc2CategoryList2(hi, &count));
}
从load_categories_nolock方法中摘抄了部分代码,发现内部调用了attachCategories.
attachCategories
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
/*
* Only a few classes have more than 64 categories during launch.
* This uses a little stack, and avoids malloc.
*
* Categories must be added in the proper order, which is back
* to front. To do that with the chunking, we iterate cats_list
* from front to back, build up the local buffers backwards,
* and call attachLists on the chunks. attachLists prepends the
* lists, so the final result is in the expected order.
*/
constexpr uint32_t ATTACH_BUFSIZ = 64;
method_list_t *mlists[ATTACH_BUFSIZ];
property_list_t *proplists[ATTACH_BUFSIZ];
protocol_list_t *protolists[ATTACH_BUFSIZ];
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
bool isMeta = (flags & ATTACH_METACLASS);
auto rwe = cls->data()->extAllocIfNeeded();
for (uint32_t i = 0; i < cats_count; i++) {
auto& entry = cats_list[i];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
if (mcount == ATTACH_BUFSIZ) {
prepareMethodLists(cls, mlists, mcount, NO, fromBundle, __func__);
rwe->methods.attachLists(mlists, mcount);
mcount = 0;
}
mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
if (propcount == ATTACH_BUFSIZ) {
rwe->properties.attachLists(proplists, propcount);
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
if (protolist) {
if (protocount == ATTACH_BUFSIZ) {
rwe->protocols.attachLists(protolists, protocount);
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
if (mcount > 0) {
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount,
NO, fromBundle, __func__);
rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
if (flags & ATTACH_EXISTING) {
flushCaches(cls, __func__, [](Class c){
// constant caches have been dealt with in prepareMethodLists
// if the class still is constant here, it's fine to keep
return !c->cache.isConstantOptimizedCache();
});
}
}
rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
- method_list_t *mlists(方法数组)
- property_list_t *proplists(属性数组)
- protocol_list_t *protolists(协议数组)
可以看到.在attachCategories方法中.会加载方法,属性,协议.并且.从load_categories_nolock方法中可以看出.先加载实例方法,再加载类方法.也就是说.是先处理类对象,再处理元类对象.
在attachCategories 中遍历加载的分类列表.将每一个分类中方法,属性,协议通过attachLists方法.将三个数组拼接到类对象或者元类对象的对应的 方法,属性,协议 列表中.
从attachToClass看分类加载时机
从源码可以看出.加载分类的时候.都会调用objc::unattachedCategories.attachToClass.我添加了自己的Test类做比较.在attachToClass中增加了自己的代码并添加断点.查看调用栈
-
1.Test类与分类皆实现了+load方法
-
2.Test类实现+load方法,Test的分类没有实现+load方法
-
3.Test类没有实现+load方法,Test的分类实现+load方法
-
4.Test类没实现+load方法,Test的分类也没有实现+load方法
可以看出.只要一个类实现了+load的方法.类就会强制在read_images时进行分类加载.
而类不实现+load,分类实现了,则会在load_images方法进行分类加载
而类与分类都不实现的情况下.则会在调用方法时,进行类的加载.msgSend ===> lookUpImpOrForward
attachLists
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
uint32_t newCount = oldCount + addedCount;
array_t *newArray = (array_t *)malloc(array_t::byteSize(newCount));
newArray->count = newCount;
array()->count = newCount;
for (int i = oldCount - 1; i >= 0; i--)
newArray->lists[i + addedCount] = array()->lists[i];
for (unsigned i = 0; i < addedCount; i++)
newArray->lists[i] = addedLists[i];
free(array());
setArray(newArray);
validate();
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
validate();
}
else {
// 1 list -> many lists
Ptr<List> oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
for (unsigned i = 0; i < addedCount; i++)
array()->lists[i] = addedLists[i];
validate();
}
}
从attachLists中可以看出.在扩容方法数组时,会将类的旧方法往后移,然后通过for循环将分类的方法填充进空出的位置中.所以,如果分类有跟本类同名方法,并不会覆盖原有方法.只是分类方法在方法列表中排前,所以msgSend过程中.会先被命中.
并且多个分类有同名方法时,加载顺序是怎么样呢?
@interface Test : NSObject
@end
@implementation Test
@end
@interface Test (Test1)
+ (void)test;
@end
@implementation Test (Test1)
+ (void)test {
NSLog(@"%s",__func__);
}
@end
@interface Test (Test2)
+ (void)test;
@end
@implementation Test (Test2)
+ (void)test {
NSLog(@"%s",__func__);
}
@end
image-20210518164916835.png
build phases中,在调换Test1,Test2的顺序后.打印出的结果也不痛.
//当Test1在上
TestExtension[60879:1094130] +[Test(Test2) test]
//Test2在上
TestExtension[60935:1095749] +[Test(Test1) test]
分类添加属性
上面看到.虽然category_t中有属性列表,并无成员列表.
所以为类添加属性后,由于不存在成员列表.所以也不会像类声明属性时,默认会有@synthesize xxxx这一步骤.生成getter,setter方法和成员名成员标量.
所以当我们直接使用分类声明的属性时,无论是取值还是赋值.都会报对应的 unrecognized selector sent to instance错误.
那么,我们想要通过分类,为类添加属性,应该怎么做呢?
我们可以通过OC的关联对象来完成分类为类添加属性的功能.
关联对象
runtime中,关联对象允许我们动态的把一个对象与某一块地址动态的关联起来.篇幅太长,这里不做原理的分析.只简单写一下怎么完成关联对象
//Test+Test1.h
#import "Test.h"
NS_ASSUME_NONNULL_BEGIN
@interface Test (Test1)
@property(nonatomic, copy)NSString *testName;
@end
NS_ASSUME_NONNULL_END
//Test+Test1.m
#import "Test+Test1.h"
#import <objc/runtime.h>
@implementation Test (Test1)
- (void)setTestName:(NSString *)testName {
objc_setAssociatedObject(self, "testName", testName, OBJC_ASSOCIATION_COPY_NONATOMIC);
}
- (NSString *)testName {
return objc_getAssociatedObject(self, "testName");
}
@end
上述就是使用关联对象,完成分类为类添加属性的示例.
网友评论