EM算法

作者: qzlydao | 来源:发表于2020-06-02 09:37 被阅读0次

1. EM介绍

EM(Expectation Maximization Algorithm, EM)是Dempster等人于1977年提出的一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(MLE),或极大后验概率估计(MAP)。

2. EM算法描述

  1. 输入

    X:观测变量数据

    Z:隐变量数据

    P(X,Z|\theta):联合分布

    P(Z|X,\theta):条件分布,后验概率

  2. 输出

    \hat{\theta}:模型参数

  3. 迭代过程

    • 初始化参数\theta^{(0)}

    • E步:记\theta^{(i)}是第i 次迭代参数\theta的估计值,则第i+1 次迭代的E步:求对数联合概率在后验上的期望:
      \begin{eqnarray*} Q(\theta,\theta^{(i)}) &=& E_{Z}\left[\text{log}P(X,Z|\theta)|X,\theta^{(i)} \right] \\ &=& \sum_{Z}\text{log}P(X,Z|\theta)P(Z|X,\theta^{(i)}) \end{eqnarray*}

    • M步:求i+1步的参数估计值\theta^{(i+1)}
      \theta^{(i+1)}=\underset{\theta}{\text{argmax}}Q(\theta,\theta^{(i)})

    • 重复E步和M步,直到收敛:
      \left\| \theta^{(i+1)} - \theta^{(i)} \right\| < \varepsilon_{1} \\ \left\| Q(\theta^{(i+1)} , \theta^{(i)} ) - Q(\theta^{(i)} , \theta^{(i)} ) \right\| < \varepsilon_{2}

3. EM公式导出之ELBO+KL Divergence

MLE的做法是最大化似然函数:
\begin{eqnarray*} \mathcal{L}{(\theta)} &=& \text{log}P(X|\theta)=\text{log}\sum_{Z}P(X,Z|\theta) \\ &=& \text{log} \left\{\sum_{Z}P(X|Z,\theta)P(Z|\theta) \right\} \end{eqnarray*}
上面的式子中有隐变量Z并且是\text{log}\sum形式,不好直接计算。

EM的做法是求出似然函数的下界,不断迭代,使得下界不断逼近\mathcal{L}{(\theta)}.

\begin{eqnarray*} \mathcal{L}{(\theta)} &=& \text{log}P(X|\theta) \tag{1}\\ &=& \text{log}P(X,Z|\theta) - \text{log}P{(Z|X,\theta)} \tag{2}\\ &=& \text{log}\frac{P(X,Z|\theta)}{q(Z)} - \text{log}\frac{P{(Z|X,\theta)}}{q(Z)} \tag{3} \end{eqnarray*}
等式两边同时对q(Z)求期望:
\begin{eqnarray*} \text{left} &=& \int_{Z}q(Z)\text{log}P(X|\theta)\text{d}Z \\ &=& \text{log}P(X|\theta)\int_{Z}q(Z)\text{d}Z \\ &=& \text{log}P(X|\theta) \end{eqnarray*}

\begin{eqnarray} \text{right} &=& \int_{Z}q(Z)\text{log}\frac{P(X,Z|\theta)}{q(Z)}\text{d}Z - \int_{Z}q(Z)\text{log}\frac{P{(Z|X,\theta)}}{q(Z)}\text{d}Z \\ &=& \int_{Z}q(Z)\text{log}P(X,Z|\theta)\text{d}Z -\int_{Z}q(Z)\text{log}q(Z)\text{d}Z- \int_{Z}q(Z)\text{log}\frac{P{(Z|X,\theta)}}{q(Z)}\text{d}Z \\ &=& \underbrace { \int_{Z}q(Z)\text{log}P(X,Z|\theta)\text{d}Z -\int_{Z}q(Z)\text{log}q(Z)\text{d}Z }_{ ELBO } + KL\left(q(Z)||P(Z|X,\theta)\right) \end{eqnarray}

所以:
\text{log}P(X|\theta) = \underbrace { \int_{Z}q(Z)\text{log}P(X,Z|\theta)\text{d}Z -\int_{Z}q(Z)\text{log}q(Z)\text{d}Z }_{ ELBO } + KL\left(q(Z)||P(Z|X,\theta)\right) \tag{4}
上式中,ELBO(\text{evidence lower bound})是一个下界,所以\text{log}P(X|\theta) \geq ELBO,当KL散度为0时,等式成立。

也就是说,不断最大化ELBO等价于最大化似然函数。在EM迭代过程中的第i 步,假设q(Z)=q(Z|X,\theta^{(i)}),然后最大化ELBO
\begin{eqnarray} \hat{\theta}^{(i+1)} &=& \underset{\theta}{\text{argmax}}ELBO \\ &=& \underset{\theta}{\text{argmax}} \int_{Z}q(Z|X,\theta^{(i)})\text{log}P(X,Z|\theta)\text{d}Z -\underbrace{\int_{Z}q(Z|X,\theta^{(i)})\text{log}q(Z|X,\theta^{(i)})\text{d}Z}_{\text{independent with } \theta} \\ &=& \color{red}{\underset{\theta}{\text{argmax}} \int_{Z}q(Z|X,\theta^{(i)})\text{log}P(X,Z|\theta)\text{d}Z} \tag{5} \end{eqnarray}

4. EM公式导出之ELBO+Jensen Inequality

4.1 Jensen Inequality

4.2 EM公式推导

对log-likelihood做如下变换:
\begin{eqnarray*} \text{log}P(X|\theta) &=& \text{log}\int_{Z}P(X,Z|\theta)\text{d}Z = \text{log}\int_{Z} q(Z) \frac{P(X,Z|\theta)}{q(Z)}\text{d}Z \\ &=& \text{log}\mathbb{E}_{q(Z)}\left(\frac{P(X,Z|\theta)}{q(Z)} \right) \\ &\geq& \mathbb{E}_{q(Z)} \left[\text{log}\frac{P(X,Z|\theta)}{q(Z)} \right] \\ &=& ELBO \end{eqnarray*}
只有当P(X,Z|\theta) = C \cdot q(Z)时,等号才成立。

5. EM收敛性证明

如果能证明
P(X|\theta^{(i+1)}) \geq P(X|\theta^{(i)})
则说明EM是收敛的,因为P(X|\theta)肯定有界,单调有界函数必收敛!

\begin{eqnarray*} \text{log}P(X|\theta) &=& \text{log}P(X,Z|\theta) - \text{log}P{(Z|X,\theta)} \\ &=& \underbrace{\int_{Z}p(Z|X,\theta^{(i)}) \text{log}P(X,Z|\theta) \text{d}Z}_{Q(\theta,\theta^{(i)})} - \underbrace{\int_{Z}p(Z|X,\theta^{(i)}) \text{log}P{(Z|X,\theta)}\text{d}Z}_{H(\theta,\theta^{(i)})} \end{eqnarray*}
由于\theta^{(i+1)}使得Q(\theta,\theta^{(i)})达到极大,所以:
Q(\theta^{(i+1)},\theta^{(i)}) - Q(\theta^{(i)},\theta^{(i)})\geq 0

\begin{eqnarray*} H(\theta^{(i+1)},\theta^{(i)}) - H(\theta^{(i)},\theta^{(i)}) &=& \int_{Z}p(Z|X,\theta^{(i)}) \text{log}P{(Z|X,\theta^{(i+1)})}\text{d}Z - \int_{Z}p(Z|X,\theta^{(i)}) \text{log}P{(Z|X,\theta^{(i)})}\text{d}Z \\ &=& \int_{Z}p(Z|X,\theta^{(i)}) \frac{\text{log}P{(Z|X,\theta^{(i+1)})}}{\text{log}P{(Z|X,\theta^{(i)})}}\text{d}Z \\ &=& -KL\left(p(Z|X,\theta^{(i)}) || \text{log}P{(Z|X,\theta^{(i+1)})} \right) \\ &\leq& 0 \end{eqnarray*}

因此,得到:
P(X|\theta^{(i+1)}) \geq P(X|\theta^{(i)})

相关文章

网友评论

      本文标题:EM算法

      本文链接:https://www.haomeiwen.com/subject/fpvyzhtx.html