美文网首页
《How to Construct Deep Recurrent

《How to Construct Deep Recurrent

作者: best___me | 来源:发表于2017-11-22 20:21 被阅读0次

    论文链接:https://arxiv.org/pdf/1312.6026.pdf

    扩展RNN成为一个deep RNN。RNN的三点可以变得deeper:1)input-to-hidden function  2)hidden-to-hidden transition 3)hidden-to-output function. 

    RNN在建模变长序列时是很受欢迎的选择,而RNN的深度本来就是模棱两可的。

    In one sense, if we consider the existence of a composition of several nonlinear computational layers in a neural network being deep, RNNs are already deep, since any RNN can be expressed as a composition of multiple nonlinear layers when unfolded in time.


    2. Recurrent Neural Networks

    模拟a discrete-time dynamical system时间离散的动力系统 that has an input xt, an output yt and a hidden state ht.    

    RNN

    fh和fo代表state transition函数和一个输出函数。

    parameters

    N training sequences:

    训练序列

    RNN的参数通过最小化如下的cost function:

    cost function

    d(a, b)是提前定义好的divergence measure(散度测度?距离吧.....或者相似度), 例如欧氏距离或交叉熵。

    2.1 Conventional Recurrent Neural Network传统的RNN

    transition function and the output function

    W,U和V分别是transition,input和output矩阵。

    element-wise nonlinear functions

    3 Deep Recurrent Neural Network

    3.1 why deep recurrent neural network?

    一个假设

    Deep learning is built around a hypothesis that a deep, hierarchical model can be exponentially more efficient at representing some functions than a shallow one.

    3.2 Depth of a Recurrent Neural Network

    The depth is defined in the case of feedforward neural networks as having multiple nonlinear layers between input and output.

    这个定义不适用于RNN,因为RNN在时间上的结构。例如,任何RNN在时间上展开为图1所示,because a computational path between the input at time k < t to the output at time t crosses several nonlinear layers.

    3.2.1 Deep input-to-hidden function

    A model can exploit more non-temporal structure from the input by making the input-to-hidden function deep.

    3.2.2 Deep Hidden-to-Output Function

    A deep hidden-to-output function can be useful to disentangle the factors of variations in the hidden state, making it easier to predict the output.

    deep transition RNN:

    deep transition RNN

    stacked RNN

    stacked RNN

    Neural Operation:

    相关文章

      网友评论

          本文标题:《How to Construct Deep Recurrent

          本文链接:https://www.haomeiwen.com/subject/fqdfvxtx.html