美文网首页
红黑树算法及代码(C++版)

红黑树算法及代码(C++版)

作者: 淇漯草 | 来源:发表于2020-05-13 16:15 被阅读0次

红黑树的定义

1.节点非黑即红。
2.根节点为黑。
3.红色节点不连续。(插入时,做判定)
4.完美黑色平衡:根节点到NULL节点,经过黑色节点数目相同。

数据结构

节点结构

struct RedBlackNode{
    int _key;
    int _value;
    RedBlackNode *_left = NULL;
    RedBlackNode *_right = NULL;
    RedBlackNode *_parent = NULL;
    Color color = RED;
};

建立这棵树的规则

判定不符合性质3

满足while则不符合性质3

while(parent && parent->color == RED)

1.变色(uncle红,parent红)

parent、uncle-->黑
grandParent-->红
下一个可能出现不符合规则的,为grandParent节点,下次判定cur=grandParent,parent = grandParent->parent

PS:通过变色,当出现parent为根节点时,满足性质3,退出判定。

2.旋转(uncle黑,parent红)

parent-->黑
grandParent-->红 (经过旋转后,parent成为grandparent,grandparent成为parent)

类型 旋转情况
LL 右旋
LR 左旋后右旋
RR 左旋
RL 右旋后左旋

PS:
1.LR的本质是转换成LL。所以变色在左旋后。(RL同理)
2.旋转必结束判定

检查这棵树是否满足要求

检查条件:红黑树每条路径上黑色节点数量相同

外封装:

bool RBTree::Check(){
  int blackNum = 0;
  RBTreeNode *cur = _root;
  while(cur){
    if(cur->_color == BLACK)
      blackNum++;
    cur = cur->_left;//任意方向
  }
  int CBNum = 0;//count Black number
  return _Check(_root, blackNum, CBNum);
}

检查黑色节点是否满足要求

bool RBTree::_Check(RBTreeNode *root, int blackNum, int CBNum)
{
  if(root == NULL)
    return true;
  if(root->_color == BLACK)
  {
    CBNum++;
    if(root->_left == NULL && root->_right == NULL){
      return true;
    }
    else{
      cout << "叶子节点为" << root->_key << "路径的黑色节点数目与最左侧支路的黑色节点数目不相等!" << endl;
      return false;
    }
  }else if(root->_parent && root->_parent->_color == RED){
    //判断是否存在连续的两个红色节点
    cout << root->_parent->_key << " 和 "  << root->_key << "为两个连续的红色节点" << endl;
    return false;
  }
  return _Check(root->_left, blackNum, CBNum) && _Check(root->_right, blackNum, CBNum);
}
#include <iostream>
#include <cmath>
#include <vector>
#include <random>

using namespace std;

/*请在这里输入这个程序的功能或者作用*/
enum Color{RED, BLACK};
struct RedBlackNode{
    int _key;
    int _value;
    RedBlackNode *_left = NULL;
    RedBlackNode *_right = NULL;
    RedBlackNode *_parent = NULL;
    Color color = RED;
};


class RedBlackTree{
public:
    RedBlackTree():
        _root(NULL)
    {}
    void RotateL(RedBlackNode *&node){
        RedBlackNode *parent = node->_parent;
        RedBlackNode *subR = node->_right;
        RedBlackNode *subRL = subR->_left;

        //需要变动的是 node, subR, subRL, parent
        node->_parent = subR;
        node->_right = subRL;

        subR->_parent = parent;
        subR->_left = node;

        if(subRL)subRL->_parent = node;

        if(parent==NULL){
            _root = subR;
        }
        else{
            if(parent->_left == node){
                parent->_left = subR;
            }else if(parent->_right == node){
                parent->_right = subR;
            }
        }
        //根节点换人
        node = subR;
    }
    void RotateR(RedBlackNode *&node){
        RedBlackNode *parent = node->_parent;
        RedBlackNode *subL = node->_left;
        RedBlackNode *subLR = subL->_right;
        
        //node, subL, subLR, parent
        node->_left = subLR;
        node->_parent = subL;

        subL->_parent = parent;
        subL->_right = node;

        if(subLR)subLR->_parent = node;

        if(parent == NULL){
            _root = subL;
        }else{
            if(parent->_left == node){
                parent->_left = subL;
            }else if(parent->_right == node){
                parent->_right = subL;
            }
        }
        node = subL;
    }
    RedBlackNode* CreateNode(int key, int value){
        RedBlackNode *temp = new RedBlackNode;
        temp->_key = key; temp->_value = value;
        return temp;
    }
    bool Insert(int key, int value){
        if(_root == NULL){
            _root = CreateNode(key, value);
            _root->color = BLACK;
            return true;
        }
        RedBlackNode *cur = _root, *parent = NULL;
        while(cur){
            parent = cur;
            if(key < cur->_key){
                cur = cur->_left;
            }else if(key > cur->_key){
                cur = cur->_right;
            }else return false;
        }
        cur = CreateNode(key, value);
        if(key < parent->_key){
            parent->_left = cur;
        }else if(key > parent->_key){
            parent->_right = cur;
        }
        cur->_parent = parent;

        while(parent && parent->color == RED){
            RedBlackNode* grandParent = parent->_parent;
            if(parent == grandParent->_left){
                RedBlackNode *uncle = grandParent->_right;
                if(uncle && uncle->color == RED){
                    grandParent->color = RED;
                    parent->color = BLACK;
                    uncle->color = BLACK;
                    
                    cur = grandParent;
                    parent = cur->_parent;
                }else if((uncle && uncle->color == BLACK) || uncle == NULL){
                    if(cur == parent->_left){
                        parent->color = BLACK;
                        grandParent->color = RED;
                        RotateR(grandParent);
                    }else if(cur == parent->_right){
                        RotateL(parent);
                        parent->color = BLACK;
                        grandParent->color = RED;
                        RotateR(grandParent);
                    }
                    break;
                }
            }else if(parent == grandParent->_right){
                RedBlackNode *uncle = grandParent->_left;
                if(uncle && uncle->color == RED){
                    grandParent->color = RED;
                    parent->color = BLACK;
                    uncle->color = BLACK;
                    
                    cur = grandParent;
                    parent = cur->_parent;
                }else if((uncle && uncle->color == BLACK) || uncle == NULL){
                    if(cur == parent->_right){
                        parent->color = BLACK;
                        grandParent->color = RED;
                        RotateL(grandParent);
                    }else if(cur == parent->_left){
                        RotateR(parent);
                        parent->color = BLACK;
                        grandParent->color = RED;
                        RotateL(grandParent);
                    }
                    break;
                }
            }
        }
        _root->color = BLACK;
        return true;        
    }
    void InOrder(){
        if(_root == NULL){
            cout << "No";
            return;
        }
        _InOrder(_root);
    }
    void _InOrder(RedBlackNode *a){
        if(a==NULL)return;
        _InOrder(a->_left);
        string str_color = a->color==RED ? "RED": "BLACK";
        cout << "key:"<< a->_key << "value:" << a->_value << " Color:" << str_color;
        if(a->_parent) cout << "parent_key:" << a->_parent->_key;
        cout << endl;
        _InOrder(a->_right);
        return;
    }
    bool Check(){
        int blackNum = 0;
        RedBlackNode *cur = _root;
        while(cur){
            if(cur->color == BLACK)
            blackNum++;
            cur = cur->_left;//任意方向
        }
        int CBNum = 0;//count Black number
        return _Check(_root, blackNum, CBNum);
    }
    bool _Check(RedBlackNode *root, int blackNum, int CBNum)
    {
        if(root == NULL)
            return true;
        if(root->color == BLACK)
        {
            CBNum++;
            if(root->_left == NULL && root->_right == NULL){
                if(blackNum == CBNum)
                    return true;
                else{
                    cout << "叶子节点为" << root->_key << "路径的黑色节点数目与最左侧支路的黑色节点数目不相等!" << endl;
                    return false;
                }
            }
        }else if(root->_parent && root->_parent->color == RED){
            //判断是否存在连续的两个红色节点
            cout << root->_parent->_key << " 和 "  << root->_key << "为两个连续的红色节点" << endl;
            return false;
        }
        return _Check(root->_left, blackNum, CBNum) && _Check(root->_right, blackNum, CBNum);
    }
private:
    RedBlackNode* _root;
};

int main()
{
    RedBlackTree tree;
    vector<int> nums = {16,3,7,11,9,26,18,14,15,20,100,0,1,2,5};
    for(int i=0; i<nums.size(); i++){
        tree.Insert(nums[i], i);
    }
    tree.InOrder();
    cout << "check:" << tree.Check();
    return 0;
}


参考资料
红黑树知识:脑子里(忘记哪里学的了)
红黑树代码参考(该代码使用了模板,我用了int形式自己写了一遍)

相关文章

  • 红黑树算法及代码(C++版)

    红黑树的定义 1.节点非黑即红。2.根节点为黑。3.红色节点不连续。(插入时,做判定)4.完美黑色平衡:根节点到N...

  • 红黑树

    首先说明一点,这里实现的红黑树,和《算法》(第四版)里面的算法是一样的,不是按照《算法导论》里面的红黑树算法写的。...

  • HashMap1.8 源码解析(3)--TreeNode(红黑树

    完整代码:代码 前言 在写这篇文章之前,我针对红黑树参考算法导论写了一篇文章图解红黑树-算法导论-java实现基于...

  • 数据结构与算法-AVL 红黑树

    AVL树AVL树 算法红黑树红黑树 B站

  • (313)红黑树-java实现

    引言 根据《算法》第4版。编写红黑树。 理论 参见: 浅谈算法和数据结构: 八 平衡查找树之2-3树 浅谈算法和数...

  • STL源码解析(1)-红黑树

    STL源码解析(1)-红黑树 STL容器之红黑树实现 C++中map和set都是基于红黑树的实现, 其迭代器也是红...

  • 【红黑树-Java】红黑树,算法导论实现版

    正文之前 不得不说,《算法导论》的伪代码真的是好东西,轻轻一改就是一个船新版本的红黑树具体实现方式。。不多说,直接...

  • 数据结构之红黑树

    2-3树 在了解红黑树之前,我们先来认识2-3树,在算法(第4版)[https://book.douban.com...

  • 红黑树笔记

    红黑树:R-B Tree [toc]参考:红黑树(一)之 原理和算法详细介绍红黑树(五)之 Java的实现 1 简...

  • 红黑树专题

    0.目录 1.算法导论的红黑树本质上是2-3-4树 2.红黑树的结构和性质 3.红黑树的插入 4.红黑树的删除 5...

网友评论

      本文标题:红黑树算法及代码(C++版)

      本文链接:https://www.haomeiwen.com/subject/fqnnnhtx.html