美文网首页深度学习研究所
目标检测领域 2015-2

目标检测领域 2015-2

作者: 西方失败9527 | 来源:发表于2017-10-20 21:38 被阅读0次

    Shallow and Deep Convolutional Networks for Saliency Prediction

    arxiv:http://arxiv.org/abs/1603.00845

    github:https://github.com/imatge-upc/saliency-2016-cvpr

    Recurrent Attentional Networks for Saliency Detection

    intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)

    arxiv:http://arxiv.org/abs/1604.03227

    Two-Stream Convolutional Networks for Dynamic Saliency Prediction

    arxiv:http://arxiv.org/abs/1607.04730

    Unconstrained Salient Object Detection

    Unconstrained Salient Object Detection via Proposal Subset Optimization

    intro: CVPR 2016

    project page:http://cs-people.bu.edu/jmzhang/sod.html

    paper:http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf

    github:https://github.com/jimmie33/SOD

    caffe model zoo:https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection

    DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

    paper:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf

    Salient Object Subitizing

    intro: CVPR 2015

    intro: predicting the existence and the number of salient objects in an image using holistic cues

    project page:http://cs-people.bu.edu/jmzhang/sos.html

    arxiv:http://arxiv.org/abs/1607.07525

    paper:http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf

    caffe model zoo:https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing

    Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

    intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)

    arxiv:http://arxiv.org/abs/1608.05177

    Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

    intro: ECCV 2016

    arxiv:http://arxiv.org/abs/1608.05186

    Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

    arxiv:http://arxiv.org/abs/1608.08029

    A Deep Multi-Level Network for Saliency Prediction

    arxiv:http://arxiv.org/abs/1609.01064

    Visual Saliency Detection Based on Multiscale Deep CNN Features

    intro: IEEE Transactions on Image Processing

    arxiv:http://arxiv.org/abs/1609.02077

    A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

    intro: DSCLRCN

    arxiv:https://arxiv.org/abs/1610.01708

    Deeply supervised salient object detection with short connections

    arxiv:https://arxiv.org/abs/1611.04849

    Weakly Supervised Top-down Salient Object Detection

    intro: Nanyang Technological University

    arxiv:https://arxiv.org/abs/1611.05345

    Specific Object Deteciton

    Face Deteciton

    Multi-view Face Detection Using Deep Convolutional Neural Networks

    intro: Yahoo

    arxiv:http://arxiv.org/abs/1502.02766

    From Facial Parts Responses to Face Detection: A Deep Learning Approach

    project page:https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html

    arxiv:https://arxiv.org/abs/1604.02878

    github(Matlab):https://github.com/kpzhang93/MTCNN_face_detection_alignment

    github(MXNet):https://github.com/pangyupo/mxnet_mtcnn_face_detection

    github:https://github.com/DaFuCoding/MTCNN_Caffe

    Datasets / Benchmarks

    FDDB: Face Detection Data Set and Benchmark

    homepage:http://vis-www.cs.umass.edu/fddb/index.html

    results:http://vis-www.cs.umass.edu/fddb/results.html

    WIDER FACE: A Face Detection Benchmark

    homepage:http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/

    arxiv:http://arxiv.org/abs/1511.06523

    Facial Point / Landmark Detection

    Deep Convolutional Network Cascade for Facial Point Detection

    homepage:http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm

    paper:http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr13.pdf

    github:https://github.com/luoyetx/deep-landmark

    A Recurrent Encoder-Decoder Network for Sequential Face Alignment

    intro: ECCV 2016

    arxiv:https://arxiv.org/abs/1608.05477

    Detecting facial landmarks in the video based on a hybrid framework

    arxiv:http://arxiv.org/abs/1609.06441

    Deep Constrained Local Models for Facial Landmark Detection

    arxiv:https://arxiv.org/abs/1611.08657

    People Detection

    End-to-end people detection in crowded scenes

    arxiv:http://arxiv.org/abs/1506.04878

    github:https://github.com/Russell91/reinspect

    ipn:http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb

    Detecting People in Artwork with CNNs

    intro: ECCV 2016 Workshops

    arxiv:https://arxiv.org/abs/1610.08871

    Person Head Detection

    Context-aware CNNs for person head detection

    arxiv:http://arxiv.org/abs/1511.07917

    github:https://github.com/aosokin/cnn_head_detection

    Pedestrian Detection

    Pedestrian Detection aided by Deep Learning Semantic Tasks

    intro: CVPR 2015

    project page:http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/

    paper:http://arxiv.org/abs/1412.0069

    Deep Learning Strong Parts for Pedestrian Detection

    intro: ICCV 2015. CUHK. DeepParts

    intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset

    paper:http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

    Deep convolutional neural networks for pedestrian detection

    arxiv:http://arxiv.org/abs/1510.03608

    github:https://github.com/DenisTome/DeepPed

    New algorithm improves speed and accuracy of pedestrian detection

    blog:http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php

    Pushing the Limits of Deep CNNs for Pedestrian Detection

    intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”

    arxiv:http://arxiv.org/abs/1603.04525

    A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

    arxiv:http://arxiv.org/abs/1607.04436

    A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

    arxiv:http://arxiv.org/abs/1607.04441

    Is Faster R-CNN Doing Well for Pedestrian Detection?

    arxiv:http://arxiv.org/abs/1607.07032

    github:https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

    Reduced Memory Region Based Deep Convolutional Neural Network Detection

    intro: IEEE 2016 ICCE-Berlin

    arxiv:http://arxiv.org/abs/1609.02500

    Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

    arxiv:https://arxiv.org/abs/1610.03466

    Multispectral Deep Neural Networks for Pedestrian Detection

    intro: BMVC 2016 oral

    arxiv:https://arxiv.org/abs/1611.02644

    Vehicle Detection

    DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

    intro: ECCV 2016

    arxiv:http://arxiv.org/abs/1607.04564

    Traffic-Sign Detection

    Traffic-Sign Detection and Classification in the Wild

    project page(code+dataset):http://cg.cs.tsinghua.edu.cn/traffic-sign/

    paper:http://120.52.73.11/www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf

    code & model:http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip

    Boundary / Edge / Contour Detection

    Holistically-Nested Edge Detection

    intro: ICCV 2015, Marr Prize

    paper:http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf

    arxiv:http://arxiv.org/abs/1504.06375

    github:https://github.com/s9xie/hed

    Unsupervised Learning of Edges

    intro: CVPR 2016. Facebook AI Research

    arxiv:http://arxiv.org/abs/1511.04166

    zn-blog:http://www.leiphone.com/news/201607/b1trsg9j6GSMnjOP.html

    Pushing the Boundaries of Boundary Detection using Deep Learning

    arxiv:http://arxiv.org/abs/1511.07386

    Convolutional Oriented Boundaries

    intro: ECCV 2016

    arxiv:http://arxiv.org/abs/1608.02755

    Richer Convolutional Features for Edge Detection

    intro: richer convolutional features (RCF)

    arxiv:https://arxiv.org/abs/1612.02103

    Skeleton Detection

    Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

    arxiv:http://arxiv.org/abs/1603.09446

    github:https://github.com/zeakey/DeepSkeleton

    DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

    arxiv:http://arxiv.org/abs/1609.03659

    Fruit Detection

    Deep Fruit Detection in Orchards

    arxiv:https://arxiv.org/abs/1610.03677

    Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

    intro: The Journal of Field Robotics in May 2016

    project page:http://confluence.acfr.usyd.edu.au/display/AGPub/

    arxiv:https://arxiv.org/abs/1610.08120

    Others

    Deep Deformation Network for Object Landmark Localization

    arxiv:http://arxiv.org/abs/1605.01014

    Fashion Landmark Detection in the Wild

    arxiv:http://arxiv.org/abs/1608.03049

    Deep Learning for Fast and Accurate Fashion Item Detection

    intro: Kuznech Inc.

    intro: MultiBox and Fast R-CNN

    paper:https://kddfashion2016.mybluemix.net/kddfashion_finalSubmissions/Deep%20Learning%20for%20Fast%20and%20Accurate%20Fashion%20Item%20Detection.pdf

    Visual Relationship Detection with Language Priors

    intro: ECCV 2016 oral

    paper:https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf

    github:https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection

    OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

    github:https://github.com/geometalab/OSMDeepOD

    Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

    intro: IEEE SITIS 2016

    arxiv:https://arxiv.org/abs/1611.04357

    Associative Embedding:End-to-End Learning for Joint Detection and Grouping

    arxiv:https://arxiv.org/abs/1611.05424

    Deep Cuboid Detection: Beyond 2D Bounding Boxes

    intro: CMU & Magic Leap

    arxiv:https://arxiv.org/abs/1611.10010

    Object Proposal

    DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

    arxiv:http://arxiv.org/abs/1510.04445

    github:https://github.com/aghodrati/deepproposal

    Scale-aware Pixel-wise Object Proposal Networks

    intro: IEEE Transactions on Image Processing

    arxiv:http://arxiv.org/abs/1601.04798

    Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

    intro: AttractioNet

    arxiv:https://arxiv.org/abs/1606.04446

    github:https://github.com/gidariss/AttractioNet

    Learning to Segment Object Proposals via Recursive Neural Networks

    arxiv:https://arxiv.org/abs/1612.01057

    Localization

    Beyond Bounding Boxes: Precise Localization of Objects in Images

    intro: PhD Thesis

    homepage:http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html

    phd-thesis:http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf

    github(“SDS using hypercolumns”):https://github.com/bharath272/sds

    Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

    arxiv:http://arxiv.org/abs/1503.00949

    Weakly Supervised Object Localization Using Size Estimates

    arxiv:http://arxiv.org/abs/1608.04314

    Localizing objects using referring expressions

    intro: ECCV 2016

    keywords: LSTM, multiple instance learning (MIL)

    paper:http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf

    github:https://github.com/varun-nagaraja/referring-expressions

    LocNet: Improving Localization Accuracy for Object Detection

    arxiv:http://arxiv.org/abs/1511.07763

    github:https://github.com/gidariss/LocNet

    Learning Deep Features for Discriminative Localization

    homepage:http://cnnlocalization.csail.mit.edu/

    arxiv:http://arxiv.org/abs/1512.04150

    github(Tensorflow):https://github.com/jazzsaxmafia/Weakly_detector

    github:https://github.com/metalbubble/CAM

    github:https://github.com/tdeboissiere/VGG16CAM-keras

    ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

    intro: ECCV 2016

    project page:http://www.di.ens.fr/willow/research/contextlocnet/

    arxiv:http://arxiv.org/abs/1609.04331

    github:https://github.com/vadimkantorov/contextlocnet

    Tutorials

    Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

    slides:http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

    Projects

    TensorBox: a simple framework for training neural networks to detect objects in images

    intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of theReInspectalgorithm”

    github:https://github.com/Russell91/TensorBox

    Object detection in torch: Implementation of some object detection frameworks in torch

    github:https://github.com/fmassa/object-detection.torch

    Using DIGITS to train an Object Detection network

    github:https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

    FCN-MultiBox Detector

    intro: Full convolution MultiBox Detector ( like SSD) implemented in Torch.

    github:https://github.com/teaonly/FMD.torch

    Blogs

    Convolutional Neural Networks for Object Detection

    http://rnd.azoft.com/convolutional-neural-networks-object-detection/

    Introducing automatic object detection to visual search (Pinterest)

    keywords: Faster R-CNN

    blog:https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search

    demo:https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4

    review:https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

    Deep Learning for Object Detection with DIGITS

    blog:https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

    Analyzing The Papers Behind Facebook’s Computer Vision Approach

    keywords: DeepMask, SharpMask, MultiPathNet

    blog:https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

    **Easily Create High Quality Object Detectors with Deep Learning **

    intro: dlib v19.2

    blog:http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

    How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

    blog:https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/

    github:https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

    Object Detection in Satellite Imagery, a Low Overhead Approach

    part 1:https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9

    part 2:https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

    You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

    part 1:https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of

    part 2:https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

    Faster R-CNN Pedestrian and Car Detection

    blog:https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/

    ipn:https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb

    github:https://github.com/bigsnarfdude/Faster-RCNN_TF

    相关文章

      网友评论

        本文标题: 目标检测领域 2015-2

        本文链接:https://www.haomeiwen.com/subject/frkbuxtx.html