美文网首页
利用CNN进行猫狗分类

利用CNN进行猫狗分类

作者: dataengineer | 来源:发表于2020-02-24 11:46 被阅读0次

    竞赛介绍:Kaggle Dogs vs. Cats (https://www.kaggle.com/c/dogs-vs-cats

    要点:

    1. 用kaggle API下载数据后,train文件夹下的猫狗图片须分别归入2个文件夹,即cat和dog,否则flow_from_directory会报错

    2. 由于该竞赛项目已经结束,本示例没有对test文件夹下的图片进行分类,而是用train文件夹下的图片进行训练和验证

    3. train文件夹下共有25000张图片,其中猫狗各有12500张

    代码部分:

    # 加载libraries

    import os

    import numpy as np

    import pandas as pd

    import matplotlib.pyplot as plt

    import matplotlib.figure as fig

    import tensorflow as tf

    from tensorflow.keras.preprocessing.image import ImageDataGenerator

    # 设置文件路径

    dir = os.getcwd()

    train_dir = os.path.join(dir, 'train')

    # 显示train文件夹下的猫狗图片

    fig = plt.gcf()

    fig.set_size_inches(10,10)

    for i in range(9):

        plt.subplot(330 + 1 + i)

        file_name = train_dir + '\\dog\\dog.' + str(i) + '.jpg'

        im = plt.imread(file_name)

        plt.imshow(im)

    fig = plt.gcf()

    fig.set_size_inches(10,10)

    for i in range(9):

        plt.subplot(330 + 1 + i)

        file_name = train_dir + '\\cat\\cat.' + str(i) + '.jpg'

        im = plt.imread(file_name)

        plt.imshow(im)

    # 定义earlystopping,若验证数据集的精度在2个epoch后不再改进,则停止model fit

    monitor_val_acc = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', patience=2)

    # 定义model

    model = tf.keras.models.Sequential([

        tf.keras.layers.Conv2D(filters = 32, kernel_size = (3,3), activation = 'relu', input_shape = (150,150,3)),

        tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

        tf.keras.layers.Conv2D(filters = 64, kernel_size = (3,3), activation = 'relu'),

        tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

        tf.keras.layers.Conv2D(filters = 128, kernel_size = (3,3), activation = 'relu'),

        tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

        tf.keras.layers.Conv2D(filters = 128, kernel_size = (3,3), activation = 'relu'),

        tf.keras.layers.MaxPooling2D(pool_size = (2,2)),

        tf.keras.layers.Flatten(),

        tf.keras.layers.Dense(units = 512, activation = 'relu'),

        tf.keras.layers.Dense(units = 1, activation = 'sigmoid')   

    ])

    # 编译model

    model.compile(loss = 'binary_crossentropy',optimizer = 'adam', metrics = ['accuracy'])

    # 定义ImageDataGenerator,同时考虑图像增强;如需将train数据集划分为训练和验证两个子集,需在此设置validation_split

    train_datagen = ImageDataGenerator(rescale = 1./255,

                                      rotation_range = 40,

                                      width_shift_range=0.2,

                                      height_shift_range=0.2,

                                      shear_range=0.2,

                                      zoom_range=0.2,

                                      horizontal_flip=True,

                                      fill_mode='nearest',

                                      validation_split=0.2

                                      )

    # 定义train_generator和validate_generator,classes根据label进行设置,class_mode根据应用场景设置(二分类为binary),subset根据用途分别设置为training和validation

    train_generator = train_datagen.flow_from_directory(directory = train_dir,

                                                      target_size = (150,150),

                                                      classes = ['cat','dog'],

                                                        batch_size = 20,

                                                      class_mode = 'binary',

                                                      subset = 'training')

    validate_generator = train_datagen.flow_from_directory(directory = train_dir,

                                                          target_size = (150,150),

                                                          classes = ['cat','dog'],

                                                          batch_size = 20,

                                                          class_mode = 'binary',

                                                          subset = 'validation')

    Found 20000 images belonging to 2 classes.

    Found 5000 images belonging to 2 classes.

    # 训练model

    history = model.fit_generator(generator = train_generator,

                                steps_per_epoch = 1000,

                                epochs = 20,

                                validation_data = validate_generator,

                                validation_steps = 250,

                                  callbacks = [monitor_val_acc],

                                  verbose = 2)

    Epoch 1/20

    1000/1000 - 795s - loss: 0.5794 - accuracy: 0.6880 - val_loss: 0.4907 - val_accuracy: 0.7618

    Epoch 2/20

    1000/1000 - 786s - loss: 0.4575 - accuracy: 0.7836 - val_loss: 0.3896 - val_accuracy: 0.8212

    Epoch 3/20

    1000/1000 - 804s - loss: 0.3608 - accuracy: 0.8391 - val_loss: 0.3579 - val_accuracy: 0.8384

    Epoch 4/20

    1000/1000 - 772s - loss: 0.2954 - accuracy: 0.8714 - val_loss: 0.3543 - val_accuracy: 0.8448

    Epoch 5/20

    1000/1000 - 765s - loss: 0.2313 - accuracy: 0.9015 - val_loss: 0.3222 - val_accuracy: 0.8662

    Epoch 6/20

    1000/1000 - 780s - loss: 0.1746 - accuracy: 0.9313 - val_loss: 0.3112 - val_accuracy: 0.8724

    Epoch 7/20

    1000/1000 - 797s - loss: 0.1204 - accuracy: 0.9523 - val_loss: 0.3935 - val_accuracy: 0.8784

    Epoch 8/20

    1000/1000 - 789s - loss: 0.0882 - accuracy: 0.9669 - val_loss: 0.4920 - val_accuracy: 0.8692

    Epoch 9/20

    1000/1000 - 800s - loss: 0.0594 - accuracy: 0.9785 - val_loss: 0.4468 - val_accuracy: 0.8770

    训练数据集精度为0.9785,验证数据集精度为0.8770

    # 绘制learning curves图

    loss = history.history['loss']

    val_loss = history.history['val_loss']

    accuracy = history.history['accuracy']

    val_accuracy = history.history['val_accuracy']

    epoch = range(len(loss))

    plt.style.use('ggplot')

    plt.plot(epoch, loss, color = 'blue', label = 'training loss')

    plt.plot(epoch, val_loss, color = 'red', label = 'validation loss')

    plt.title('model loss', size = 20)

    plt.legend()

    plt.figure()

    plt.plot(epoch, accuracy, color = 'blue', label = 'training accuracy')

    plt.plot(epoch, val_accuracy, color = 'red', label = 'validation accuracy')

    plt.title('model accuracy', size = 20)

    plt.legend()

    相关文章

      网友评论

          本文标题:利用CNN进行猫狗分类

          本文链接:https://www.haomeiwen.com/subject/fsemqhtx.html