写在最前面:本文内容主要来自于书籍《推荐系统实践》和《推荐系统与深度学习》。
推荐系统是目前互联网世界最常见的智能产品形式。从电子商务、音乐视频网站,到作为互联网经济支柱的在线广告和新颖的在线应用推荐,到处都有推荐系统的身影。推荐算法是推荐系统的核心,其本质是通过一定的方式将用户和物品联系起来,而不同的推荐系统利用了不同的方式。
推荐系统的主要功能是以个性化的方式帮助用户从极大的搜索空间中快速找到感兴趣的对象。因此,目前所用的推荐系统多为个性化推荐系统。个性化推荐的成功应用需要两个条件:
- 第一是存在信息过载,因为如果用户可以很容易地从所有物品中找到喜欢/需要的物品,就不需要个性化推荐了;
- 第二是用户大部分时候没有特别明确的需求。因为如果用户有明确的需求,可以直接通过搜索引擎找到感兴趣的物品。
在推荐系统的众多算法中,基于协同的推荐和基于内容的推荐在实践中得到了最广泛的应用。本文也将从这两种算法开始,结合时间、地点上下文环境以及社交环境,对常见的推荐算法做一个简单的介绍。
1、基于内容的推荐算法
基于内容的算法的本质是对物品内容进行分析,从中提取特征,然后基于用户对何种特征感兴趣来推荐含有用户感兴趣特征的物品。因此,基于内容的推荐算法有两个最基本的要求:
- (1) 需要知道物品的品质/特征,如某部影片属于何种类别——恐怖还是爱情;
- (2) 需要了解用户的兴趣,如用户喜欢的是恐怖片还是爱情片。
下面我们以一个简单的电影推荐来介绍基于内容的推荐算法。
现在有两个用户A、B和他们看过的电影以及打分情况如下:
其中问好(?)表示用户未看过。用户A对《银河护卫队 》《变形金刚》《星际迷航》三部科幻电影都有评分,平均分为 4 .7 分 ( (5+4+5 ) / 3=4.7 );对《三生三世》《美人鱼》《北京遇上西雅图》三部爱情电影评分平均分为 2.3 分 ( ( 3十2+2 ) /3=2.3 )。现在需要给A推荐电影,很明显A更倾向于科幻电影,因此推荐系统会给A推荐独立日。而对于用户B,通过简单的计算我们可以知道更喜欢爱情电影,因此给其推荐《三生三世》。当然,在实际推荐系统中,预测打分比这更加复杂些,但是其原理是一样的。
现在,我们可以将基于内容的推荐归纳为以下四个步骤:
- (1) 物品内容(特征)提取:提取每个待推荐物品的特征(内容属性),如上例中的电影类别——科幻和爱情;
- (2) 用户偏好计算:利用显式收集得到的用户偏好、评分(如问卷调查得到的)或隐式操作记录,计算用户在物品不同属性上的偏好分数。
- (3) 内容召回:将待推荐物品的特征与用户偏好得分匹配,取出用户最有可能喜欢的物品池;
- (4) 物品排序:按用户偏好召回物品池,可能一次性挑选出很多物品,我们需要进一步将这些物品进行排序并将用户最可能喜欢的物品推荐给用户。
通过上面四步就能快速构建一个简单的推荐系统。基于内容的推荐系统通常简单有效,可解释性好,没有物品冷启动问题。但他也有两个明显的缺点:
- (1)对特征提取的要求较高,若未能提取出有效准确的特征,必然将会影响后续的推荐准确度的;
- (2)推荐精度较低,相同内容特征的物品差异性不大。
最后,顺便提一下特征提取方法:对于某些特征较为明确的物品,一般可以直接对其打标签,如电影类别。而对于文本类别的特征,则主要是其主题情感等,则些可以通过tf-idf或LDA等方法得到。
2、基于协同的推荐算法
基于协同的算法在很多地方也叫基于邻域的算法,主要可分为两种:基于用户的协同算法和基于物品的协同算法。
2.1 基于物品的协同过滤算法
啤酒和尿布的故事在数据挖掘领域十分有名,该故事讲述了美国沃尔玛超市统计发现啤酒和尿布一起被购买的次数非常多,因此将啤酒和尿布摆在了一起,最后啤酒和尿布的销量双双增加了。这便是一个典型的物品协同过滤的例子。
基于物品的协同过滤指基于物品的行为相似度(如啤酒尿布被同时购买)来进行物品推荐。该算法认为,物品A和物品B具有很大相似度是因为喜欢物品A的用户大都也喜欢物品B。
基于物品的协同过滤算法主要分为两步:
- (1)计算物品之间的相似度;
- (2)根据物品行为相似度和用户的历史行为来给用户生成推荐列表。
基于物品的协同过滤算法中计算物品相似度的方法有以下几种:
(1)基于共同喜欢物品的用户列表计算。
上式中分母 N(i) 和 N(j) 分别是购买物品 i 的用户数和购买物品 j 的用户数。因此,上述公式的核心就是计算同时购买这两本书的人数的比例。同时购买这两个物品的人数越多,他们的相似度也就越高。另外值得注意的是,在分母中我们用了物品总购买人数做惩罚,也就是说某个物品可能很热门,导致它经常会被和其他物品一起购买,所以除以它的总购买人数,来降低它和其他物品的相似分数。
此外,John S. Breese再其论文中还提及了IUF(Inverse User Frequence,逆用户活跃度)的参数,其认为活跃用户对物品相似度的贡献应该小于不活跃的用户,应该增加IUF参数来修正物品相似度的公式:
上面的公式只是对活跃用户做了一种软性的惩罚, 但对于很多过于活跃的用户, 比如某位买了当当网80%图书的用户, 为了避免相似度矩阵过于稠密, 我们在实际计算中一般直接忽略他的兴趣列表, 而不将其纳入到相似度计算的数据集中。
(2)基于余弦相似度计算。
上面的方法计算物品行为相似度是直接使用同时购买这两个物品的人数,如果数据集包含了具体的评分数据,我们可以进一步将用户评分引入到相似度计算中。如上图,其中 nki 是用户 k 对物品 i 的评分,没有评分则为0。
(3)热门物品的惩罚。
从上面(1)的相似度计算公式中,我们可以发现当物品 i 被更多人购买时,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都会增长。对于热门物品,分子 N(i) ∩ N(j) 的增长速度往往高于 N(i),这就会使得物品 i 和很多其他的物品相似度都偏高,这就是 ItemCF 中的物品热门问题。推荐结果过于热门,会使得个性化感知下降。以歌曲相似度为例,大部分用户都会收藏《小苹果》这些热门歌曲,从而导致《小苹果》出现在很多的相似歌曲中。为了解决这个问题,我们对于物品 i 进行惩罚,例如下式, 当α∈(0, 0.5) 时,N(i) 越小,惩罚得越厉害,从而使热门物品相关性分数下降(博主注:这部分未充分理解):
此外,Kary pis在研究中发现如果将ItemCF的相似度矩阵按最大值归一化, 可以提高推荐的准确率。 其研究表明, 如果已经得到了物品相似度矩阵w, 那么可以用如下公式得到归一化之后的相似度矩阵w':
归一化的好处不仅仅在于增加推荐的准确度,它还可以提高推荐的覆盖率和多样性。一般来说,物品总是属于很多不同的类,每一类中的物品联系比较紧密。假设物品分为两类——A和B, A类物品之间的相似度为0.5, B类物品之间的相似度为0.6, 而A类物品和B类物品之间的相似度是0.2。 在这种情况下, 如果一个用户喜欢了5个A类物品和5个B类物品, 用ItemCF给他进行推荐, 推荐的就都是B类物品, 因为B类物品之间的相似度大。 但如果归一化之后, A类物品之间的相似度变成了1, B类物品之间的相似度也是1, 那么这种情况下, 用户如果喜欢5个A类物品和5个B类物品, 那么他的推荐列表中A类物品和B类物品的数目也应该是大致相等的。 从这个例子可以看出, 相似度的归一化可以提高推荐的多样性。
那么,对于两个不同的类,什么样的类其类内物品之间的相似度高,什么样的类其类内物品相似度低呢?一般来说,热门的类其类内物品相似度一般比较大。如果不进行归一化,就会推荐比较热门的类里面的物品,而这些物品也是比较热门的。因此,推荐的覆盖率就比较低。相反,如果进行相似度的归一化,则可以提高推荐系统的覆盖率。
最后,利用物品相似度矩阵和用户打过分的物品记录就可以对一个用户进行推荐评分:
其中,wji 是物品 j 的相似物品矩阵,scoreui是用户 u 对物品 i 的打分。
2.2 基于用户协同的推荐算法
基于用户的协同算法与基于物品的协同算法原理类似,只不过基于物品的协同是用户U购买了A物品,会计算经常有哪些物品与A一起购买(也即相似度),然后推荐给用户U这些与A相似的物品。而基于用户的协同则是先计算用户的相似性(通过计算这些用户购买过的相同的物品),然后将这些相似用户购买过的物品推荐给用户U。
基于用户的协同过滤算法主要包括两个步骤:
- (1)找到和目标用户兴趣相似的用户集合;
- (2)找到这个集合中用户喜欢的,且目标用户没有听说过的物品推荐给目标用户。
步骤(1)的关键是计算用户的兴趣相似度,主要是利用用户的行为相似度计算用户相似度。给定用户 u 和 v,N(u) 表示用户u曾经有过正反馈(譬如购买)的物品集合,N(v) 表示用户 v 曾经有过正反馈的物品集合。那么我们可以通过如下的 Jaccard 公式简单的计算 u 和 v 的相似度:
或通过余弦相似度:
得到用户之间的相似度之后,UserCF算法会给用户推荐和他兴趣最相似的K个用户喜欢的物品。如下的公式度量了UserCF算法中用户 u 对物品 i 的感兴趣程度:
其中,S(u, k)包含和用户u兴趣最接近的k个用户,N(i) 是对物品 i 有过行为的用户合集, wuv 是用户u和用户v的相似度,rvi代表用户v对物品i的兴趣,因为使用的是单一行为的隐反馈数据,所以所有的 rvi=1。
2.3 基于物品协同和基于用户协同的比较
首先回顾一下UserCF算法和ItemCF算法的推荐原理:UserCF给用户推荐那些和他有共同兴趣爱好的用户喜欢的物品, 而ItemCF给用户推荐那些和他之前喜欢的物品具有类似行为的物品。
(1)从推荐场景考虑
首先从场景来看,如果用户数量远远超过物品数量,如购物网站淘宝,那么可以考虑ItemCF,因为维护一个非常大的用户关系网是不容易的。其次,物品数据一般较为稳定,因此物品相似度矩阵不必频繁更新,维护代价较小。
UserCF的推荐结果着重于反应和用户兴趣相似的小群体的热点,而ItemCF的推荐结果着重于维系用户的历史兴趣。换句话说,UserCF的推荐更社会化,反应了用户所在小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反应了用户自己的个性传承。因此UserCF更适合新闻、微博或微内容的推荐,而且新闻内容更新频率非常高,想要维护这样一个非常大而且更新频繁的表无疑是非常难的。
在新闻类网站中,用户的兴趣爱好往往比较粗粒度,很少会有用户说只看某个话题的新闻,而且往往某个话题也不是每天都会有新闻。 个性化新闻推荐更强调新闻热点,热门程度和时效性是个性化新闻推荐的重点,个性化是补充,所以 UserCF 给用户推荐和他有相同兴趣爱好的人关注的新闻,这样在保证了热点和时效性的同时,兼顾了个性化。
(2)从系统多样性(也称覆盖率,指一个推荐系统能否给用户提供多种选择)方面来看,ItemCF的多样性要远远好于UserCF,因为UserCF更倾向于推荐热门物品。而ItemCF具有较好的新颖性,能够发现长尾物品。所以大多数情况下,ItemCF在精度上较小于UserCF,但其在覆盖率和新颖性上面却比UserCF要好很多。
3、基于矩阵分解的推荐算法
在介绍本节基于矩阵分解的隐语义模型之前,让我们先来回顾一下传统的矩阵分解方法SVD在推荐系统的应用吧。
3.1 基于SVD的推荐算法
基于SVD矩阵分解在推荐中的应用可分为如下几步:
- (1)加载用户对物品的评分矩阵;
- (2)矩阵分解,求奇异值,根据奇异值的能量占比确定降维至k的数值;
- (3)使用矩阵分解对物品评分矩阵进行降维;
- (4)使用降维后的物品评分矩阵计算物品相似度,对用户未评分过的物品进行预测;
- (5)产生前n个评分值高的物品,返回物品编号以及预测评分值。
SVD在计算前会先把评分矩阵 A 缺失值补全,补全之后稀疏矩阵 A 表示成稠密矩阵,然后将分解成 A' = U∑VT。但是这种方法有两个缺点:(1)补成稠密矩阵后需要耗费巨大的储存空间,对这样巨大的稠密矩阵进行储存是不现实的;(2)SVD的计算复杂度很高,对这样大的稠密矩阵中进行计算式不现实的。因此,隐语义模型就被发明了出来。
更详细的SVD在推荐系统的应用可参考奇异值分解SVD简介及其在推荐系统中的简单应用。
3.2 隐语义模型
隐语义模型(Latent Factor Model)最早在文本挖掘领域被提出,用于找到文本的隐含语义。相关的算法有LSI,pLSA,LDA和Topic Model。本节将对隐语义模型在Top-N推荐中的应用进行详细介绍,并通过实际的数据评测该模型。
隐语义模型的核心思想是通过隐含特征联系用户兴趣和物品。让我们通过一个例子来理解一下这个模型。
现有两个用户,用户A的兴趣涉及侦探小说、科普图书以及一些计算机技术书,而用户B的兴趣比较集中在数学和机器学习方面。那么如何给A和B推荐图书呢?
我们可以对书和物品的兴趣进行分类。对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品。简言之,这个基于兴趣分类的方法大概需要解决3个问题:
- (1)如何给物品分类?
- (2)如何确定用户对那些累的物品感兴趣,以及感兴趣的程度?
- (3)对于一个给定的类,选择哪些属于这个类的物品推荐给用户,以及如何确定这些物品在一个类中的权重?
对于第一个问题的简单解决方案是找相关专业人员给物品分类。以图书为例,每本书出版时,编辑都会给出一个分类。但是,即使有很系统的分类体系,编辑给出的分类仍然具有以下缺点:(1)编辑的意见不能代表各种用户的意见;(2)编辑很难控制分类的细粒度;(3)编辑很难给一个物品多个分类;(4)编辑很难给一个物品多个分类;(5)编辑很难给出多个维度的分类;(6)编辑很难决定一个物品在某一个类别中的权重。
为了解决上述问题,研究员提出可以从数据出发,自动找到那些分类,然后进行个性化推荐。隐语义模型由于采用基于用户行为统计的自动聚类,较好地解决了上面提出的5个问题。
LFM将矩阵分解成2个而不是3个:
现在问题变成了确定P和Q,一般P称为用户因子矩阵,而Q叫做物品因子矩阵。通常上式不能达到精确相等的程度,我们要做的就是最小化他们的误差。因此,矩阵分解问题变成了一个最优化问题。通过如下的损失函数来找到P和Q中合适的参数,其中 rij为用户 i 对物品 j 的评分。
其中pik度量了用户i的兴趣和第k个隐类的关系,而qkj度量了第k个隐类和物品j之间的关系,后两项是正则项。通过一般的梯度下降可求得上述公式的解。
推荐系统中用户和物品的交互数据分为显性反馈和隐性反馈数据。隐式模型中多了一个置信参数,具体涉及到ALS(交替最小二乘法,Alternating Least Squares)中对于隐式反馈模型的处理方式——有的文章称为“加权的正则化矩阵分解”:
隐式反馈模型中没有评分,所以上式中 rij 不是具体评分,而仅为1,表示用户与物品有过交互。cij用来表示用户偏爱某个商品的置信程度,比如交互次数多的权重就会增加。若以 dij来表示交互次数的话,则可以吧置信程度表示为下式:
损失函数最优化求解可采用ALS算法求解,具体为:
- (1)第一步时需要随机初始化Q,对 pi 求导,导数为0时得到当前最优解 pi;
- (2)固定 p,对 qj 进行求导,导数为0时得到当前最优解 qj;
- (3)重复(1)(2)知道模型收敛稳定。
一个小细节:在隐性反馈数据集中,只有正样本(正反馈)没有负反馈(负样本),因此如何给用户生成负样本来进行训练是一个重要的问题。Rong Pan在其文章中对此进行了探讨,对比了如下几种方法:
- (1)对于一个用户,用他所有没有过行为的物品作为负样本;
- (2)对于一个用户,从他没有过行为的物品中均匀采样出一些物品做为负样本;
- (3)对于一个用户,从他没有过行为的物品中采样出一些物品作为负样本,但采样时保证每个用户的正负样本数目相当;
- (4)对于一个用户,从他没有过行为的物品中采样出一些物品做为负样本,但采样时,偏重采样不热门物品。
结果显示,采样优劣的顺序为:(3)>(2)>(4)>(1)。随后,还发现对负样本采样时应遵循以下原则: - 对每个用户,要保证正负样本的平衡(数目相似);
- 对每个用户采样负样本时,要选取那些很热门,而用户却没有行为的物品。
4、基于图的模型
用户行为很容易用二分图表示,因此很多图算法都可以应用到推荐系统中。基于图的模型(graph-based model)是推荐系统中的重要内容。很多研究人员把基于领域的模型也称为基于图的模型,因为可以把基于领域的模型看作基于图的模型的简单形式。
在研究基于图的模型之前,需要将用户行为数据表示成图的形式。本节的数据是由一系列用户物品二元组 (u, i) 组成的,其中 u 表示用户对物品 i 产生过行为。
令 G(V, E) 表示用户物品二分图,其中 V=VUUVI由用户顶点 VU 和物品节点 VI 组成。对于数据集中每一个二元组 (u, i) ,图中都有一套对应的边 e(vu, vi),其中 vu∈VU是用户对应的顶点,vi∈VI是物品i对应的顶点。如下图是一个简单的物品二分图,其中圆形节点代表用户,方形节点代表物品,用户物品的直接连线代表用户对物品产生过行为。比如下图中的用户A对物品a、b、d产生过行为。
将用户行为表示为二分图后,下面的任务就是利用这个二分图进行推荐。如果将个性化推荐放到二分图上,那么就是度量那些没有与用户直连的物品与用户之间的相关性,相关性越高的物品在推荐列表中排序就越靠前。
度量图中两个顶点之间相关性的方法很多,但一般来说图中顶点的相关性主要取决于下面3个因素:
- 两个顶点之间的路径数;
- 两个顶点之间路径的长度;
- 两个顶点之间路径经过的顶点。
而相关性高的一对顶点一般具有如下特征:
- 两个顶点之间有很多路径相连;
- 连接两个顶点之间的路径长度都比较短;
- 连接两个顶点之间的路径不会经过出度比较大的顶点。
举个例子,如下图,用户A和物品c、e没有边直连,但A可通过一条长度为3的路径到达c,而Ae之间有两条长度为3的路径。那么A和e的相关性要高于顶点A和c,因而物品e在用户A的推荐列表中应该排在物品c之前,因为Ae之间有两条路径。其中,(A,b,C,e)路径经过的顶点的出度为(3,2,2,2),而 (A,d,D,e) 路径经过了一个出度比较大的顶点D,所以 (A,d,D,e) 对顶点A与e之间相关性的贡献要小于(A,b,C,e)。
基于上面3个主要因素,研究人员设计了很多计算图中顶点相关性的方法,本节将介绍一种基于随机游走的PersonalRank算法。
假设要给用户u进行个性化推荐,可以从用户u对应的节点 vu开始在用户物品二分图上进行随机游走。游走到任一节点时,首先按照概率α决定是继续游走还是停止这次游走并从 vu 节点重新开始游走。若决定继续游走,则从当前节点指向的节点中按照均匀分布随机选择一个节点作为游走下次经过的节点。这样,经过很多次随机游走后,每个物品被访问到的概率会收敛到一个数。最终的推荐列表中物品的权重就是物品节点的访问概率。
上述算法可以表示成下面的公式:
虽然通过随机游走可以很好地在理论上解释PersonalRank算法,但是该算法在时间复杂度上有明显的缺点。因为在为每个用户进行推荐时,都需要在整个用户物品二分图上进行迭代,知道所有顶点的PR值都收敛。这一过程的时间复杂度非常高,不仅无法在线进行实时推荐,离线计算也是非常耗时的。
有两种方法可以解决上面PersonalRank时间复杂度高的问题:
(1)减少迭代次数,在收敛之前停止迭代。但是这样会影响最终的精度。
(2)从矩阵论出发,重新涉及算法。另M为用户物品二分图的转移概率矩阵,即:
则迭代公式可以转化为:
解上面的方程得到:
因此,只要计算一次 (1-αMT)-1 就可以得出推荐结果。
5、基于社交网络的推荐算法
网络社交是当今社会非常重要甚至可以说是必不可少的社交方式,用户在互联网上的时间有相当大的一部分都用在了社交网络上。
5.1 基于用户的社交网络推荐算法
当前国外最著名的社交网站是Facebook和Twitter,国内的代表则是微信/QQ和微博。这些社交网站可以分为两类:
- 一种是好友一般都是自己在现实社会中认识的人,比如同事、同学、亲戚等,并且这种好友关系都是需要双方确认的,以Facebook、微信/QQ为代表,这种社交网络称为社交图谱;
- 另一种是好友往往都是现实中互不相识的,只是出于对对方言论的兴趣而建立好友关系,好友关系也是单向的关注关系,以Twitter、微博为代表,这种社交网络称为兴趣图谱。
需要指出的是,任何一个社交网站都不是单纯的社交图谱或兴趣图谱。如QQ上有些兴趣爱好群可以认识不同的陌生人,而微博中的好友也可以是现实中认识的。
社交网络定义了用户之间的联系,因此可以用图定义社交网络。我们用图 G(V,E,w) 定义一个社交网络,其中V是顶点集合,每个顶点代表一个用户,E是边集合,如果用户va和vb有社交网络关系,那么就有一条边 e(va, vb) 连接这两个用户,而 w(va, vb)定义了边的权重。一般来说,有三种不同的社交网络数据:
- (1)以Facebook为代表的朋友关系是需要双向确认的,因此在这种社交网络上可以用无向边连接有社交网络关系的用户(无向图表示);
- (2)以Twitter为代表的他的朋友关系是单向的,因此可以用有向边代表这种社交网络上的用户关系(有向图表示);
- (3)基于社区的社交网络数据,用户之间没有明确的关系,但是这种数据包含了用户属于不同社区的数据。譬如豆瓣小组,同一个小组可能代表了用户的相似性。
和一般购物网站中的用户活跃度分布和物品流行度分布类似,社交网络中用户的入度(in degree,表示有多少人关注)和出度(out degree,表示关注多少人)的分布也是满足长尾分布的。即大部分人关注的人都很少,被关注很多的人也很少。
给定一个社交网络和一份用户行为数据集。其中社交网络定义了用户之间的好友关系,而用户行为数据集定义了不同用户的历史行为和兴趣数据。那么最简单的算法就是给用户推荐好友喜欢的物品集合。即用户u对物品i的兴趣 pui可以通过如下公式计算。
其中 out(u) 是用户u的好友集合,如果用户v喜欢物品i,则rvi=1,否则rvi=0。不过,即使都是用户u的好友,不同的好友和用户u的熟悉程度和兴趣程度也是不同的。因此,我们应该在推荐算法中考虑好友和用户的熟悉程度以及兴趣相似度:
其中,wuv由两部分相似度构成,一部分是用u和用户v的熟悉程度,另一部分是用户u和用户v的兴趣相似度。
用户u和用户v的熟悉程度描述了用户u和用户在现实社会中的熟悉程度。一般来说,用户更加相信自己熟悉的好友的推荐,因此我们需要考虑用户之间的熟悉度。下面介绍3中衡量用户熟悉程度的方法。
(1)对于用户u和用户v,可以使用共同好友比例来计算他们的相似度:
上式中 out(u) 可以理解为用户u关注的用户合集,因此 out(u) ∩ out(v) 定义了用户u、v共同关注的用户集合。
(2)使用被关注的用户数量来计算用户之间的相似度,只要将公式中的 out(u) 修改为 in(u):
in(u) 是指关注用户u的集合。在无向社交网络中,in(u)和out(u)是相同的,而在微博这种有向社交网络中,这两个集合的含义就不痛了。一般来说,本方法适合用来计算微博大V之间的相似度,因为大v往往被关注的人数比较多;而方法(1)适用于计算普通用户之间的相似度,因为普通用户往往关注行为比较丰富。
(3)除此之外,还可以定义第三种有向的相似度:这个相似度的含义是用户u关注的用户中,有多大比例也关注了用户v:
这个相似度有一个缺点,就是在该相似度下所有人都和大v有很大的相似度,这是因为公式中的分母并没有考虑 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,来降低大v与其他用户的相似度:
上面介绍了3种计算用户之间相似度(或称熟悉度)的计算方法。除了熟悉程度,还需要考虑用户之间的兴趣相似度。我们和父母很熟悉,但很多时候我们和父母的兴趣确不相似,因此也不会喜欢他们喜欢的物品。因此,在度量用户相似度时,还需要考虑兴趣相似度,而兴趣相似度可以通过和UserCF类似的方法度量,即如果两个用户喜欢的物品集合重合度很高,两个用户的兴趣相似度很高。
最后,我们可以通过加权的形式将两种权重合并起来,便得到了各个好有用户的权重了。
有了权重,我们便可以针对用户u挑选k个最相似的用户,把他们购买过的物品中,u未购买过的物品推荐给用户u即可。打分公式如下:
其中 w' 是合并后的权重,score是用户v对物品的打分。
5.2 node2vec技术在社交网络推荐中的应用
node2vec的整体思路分为两个步骤:第一个步骤是随机游走(random walk),即通过一定规则随机抽取一些点的序列;第二个步骤是将点的序列输入至word2vec模型从而得到每个点的embedding向量。
随机游走在前面基于图的模型中已经介绍过,其主要分为两步:(1)选择起始节点;(2)选择下一节点。起始节点选择有两种方法:按一定规则抽取一定量的节点或者以图中所有节点作为起始节点。一般来说会选择后一种方法以保证所有节点都会被选取到。
在选择下一节点方法上,最简单的是按边的权重来选择,但在实际应用中需要通过广度优先还是深度优先的方法来控制游走范围。一般来说,深度优先发现能力更强,广度优先更能使社区内(较相似)的节点出现在一个路径里。
斯坦福大学Jure Leskovec教授给出了一种可以控制广度优先或者深度优先的方法。
以上图为例,假设第一步是从t随机游走到v,这时候我们要确定下一步的邻接节点。本例中,作者定义了p和q两个参数变量来调节游走,首先计算其邻居节点与上一节点t的距离d,根据下面的公式得到α:
当下一节点选择为t,即往回走时,d=0;当下一节点选择x1,v、t、x1构成三角形,d=1;当下一节点为x2或者x3时,d=2。根据α的值确定选择下一节点的概率。若p大于max(q, 1),则走x2,产生的序列与深度优先搜索类似,刚刚访问过的节点不太可能被重复访问。反之,若p小于min(q, 1),则产生的序列与广度优先搜索类似,倾向于周边节点。
一般从每个节点开始游走5~10次,步长则根据点的数量N游走根号N步。如此便可通过random walk生成点的序列样本。
得到序列之后,便可以通过word2vec的方式训练得到各个用户的特征向量,通过余弦相似度便可以计算各个用户的相似度了。有了相似度,便可以使用基于用户的推荐算法了。
6、推荐系统的冷启动问题
推荐系统需要根据用户的历史行为和兴趣预测用户未来的行为和兴趣,因此大量的用户行为数据就成为推荐系统的重要组成部分和先决条件。如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题。
冷启动问题主要分为三类:
- (1)用户冷启动。用户冷启动主要解决如何给新用户做个性化推荐的问题。当新用户到来时,我们没有他的行为数据,所以也无法根据他的历史行为预测其兴趣,从而无法借此给他做个性化推荐;
- (2)物品冷启动。物品冷启动主要解决如何将新的物品推荐给可能对他感兴趣的用户这一问题;
- (3)系统冷启动。系统冷启动主要解决如何在一个新开发的网站上(还没有用户,也没有用户行为,只有一些物品信息)设计个性化推荐系统,从而在网站刚发布时就让用户体验到个性化推荐服务这一问题。
针对用户冷启动,下面给出一些简要的方案:
(1)有效利用账户信息。利用用户注册时提供的年龄、性别等数据做粗粒度的个性化;
(2)利用用户的社交网络账号登录(需要用户授权),导入用户在社交网站上的好友信息,然后给用户推荐其好友喜欢的物品;
(3)要求用户在登录时对一些物品进行反馈,手机用户对这些物品的兴趣信息,然后给用推荐那些和这些物品相似的物品;
(4)提供非个性化推荐。非个性化推荐的最简单例子就是热门排行榜,我们可以给用户推荐热门排行榜,然后等到用户数据收集到一定的时候,在切换为个性化推荐。
对于物品冷启动,可以利用新加入物品的内容信息,将它们推荐给喜欢过和他们相似的物品的用户。
对于系统冷启动,可以引入专家知识,通过一定高效的方式快速建立起物品的相关度表。
7、小结
在上面介绍了一些推荐系统的基础算法知识,这些算法大都是比较经典且现在还在使用的。但是需要注意的是,在实践中,任何一种推荐算法都不是单独使用的,而是将多种推荐算法结合起来,也就是混合推荐系统,但是在这里并不准备介绍,感兴趣的可以查阅《推荐系统》或《推荐系统与深度学习》等书籍。此外,在推荐中非常重要的点击率模型以及基于矩阵的一些排序算法在这里并没有提及,感兴趣的也可自行学习。
虽然现在用的很多算法都是基于深度学习的,但是这些经典算法能够让我们对推荐系统的发展有一个比较好的理解,同时,更重要的一点——“推陈出新”,只有掌握了这些经典的算法,才能提出或理解现在的一些更好地算法。
网友评论