美文网首页
Netty源码解析—— EventLoop(二)之 EventL

Netty源码解析—— EventLoop(二)之 EventL

作者: JiMingQiang | 来源:发表于2018-09-28 16:11 被阅读0次

    Netty源码解析—— EventLoop(二)之 EventLoopGroup

    1.类结构图

    NioEventLoopGroup.png

    2. EventExecutorGroup

    EventExecutorGroup 实现 ScheduledExecutorService 、Iterable接口,这两个接口都是jdk原生接口,具体看EventExecutorGroup接口中的方法,代码如下:

       // ========== 自定义接口 ===================================
       
        //是否正在关闭
        boolean isShuttingDown();
    
        //优雅关闭线程池
        Future<?> shutdownGracefully();
      
        Future<?> shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit);
    
        //返回线程池终止时的异步结果
        Future<?> terminationFuture();
    
        //选择一个 EventExecutor 对象
        EventExecutor next();
    
    
      // ========== 实现自 Iterable 接口 ==========
        @Override
        Iterator<EventExecutor> iterator();
    
    
    // ========== 实现自 ExecutorService 接口 ==========
    
        @Override
        @Deprecated
        void shutdown();
    
       
        @Override
        @Deprecated
        List<Runnable> shutdownNow();
    
    
        @Override
        Future<?> submit(Runnable task);
    
        @Override
        <T> Future<T> submit(Runnable task, T result);
    
        @Override
        <T> Future<T> submit(Callable<T> task);
    
        // ========== 实现自 ScheduledExecutorService 接口 ==========
    
    
        @Override
        ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
    
        @Override
        <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);
    
        @Override
        ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit);
    
        @Override
        ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit);
    
    • 重点关注next()方法,该方法的功能是从线程池中选择一个线程
    • 比较特殊的是,接口方法返回类型为 Future 不是 Java 原生的 java.util.concurrent.Future ,而是 Netty 自己实现的 Future 接口,如下代码:
    public interface Future<V> extends java.util.concurrent.Future<V> 
    
    public interface ScheduledFuture<V> extends Future<V>, java.util.concurrent.ScheduledFuture<V> 
    
    

    3. AbstractEventExecutorGroup

    io.netty.util.concurrent.AbstractEventExecutorGroup ,实现 EventExecutorGroup 接口,EventExecutor ( 事件执行器 )的分组抽象类。

    3.1 submit

    #submit(...) 方法,提交一个普通任务到 EventExecutor 中, 提交的 EventExecutor ,通过 #next() 方法选择

       @Override
        public Future<?> submit(Runnable task) {
            return next().submit(task);
        }
    
        @Override
        public <T> Future<T> submit(Runnable task, T result) {
            return next().submit(task, result);
        }
    
        @Override
        public <T> Future<T> submit(Callable<T> task) {
            return next().submit(task);
        }
    

    3.2 schedule

    #schedule(...) 方法,提交一个定时任务到 EventExecutor 中,提交的 EventExecutor ,通过 #next() 方法选择。代码如下:

    @Override
        public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) {
            return next().schedule(command, delay, unit);
        }
    
        @Override
        public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
            return next().schedule(callable, delay, unit);
        }
    
        @Override
        public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
            return next().scheduleAtFixedRate(command, initialDelay, period, unit);
        }
    
        @Override
        public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
            return next().scheduleWithFixedDelay(command, initialDelay, delay, unit);
        }
    

    3.3 execute

    #execute(...) 方法,在 EventExecutor 中执行一个普通任务,不需要返回结果,代码如下:

        @Override
        public void execute(Runnable command) {
            next().execute(command);
        }
    

    3.4 invokeAll

    #invokeAll(...) 方法,在 EventExecutor 中执行多个普通任务, 多个任务使用同一个 EventExecuto。代码如下:

        @Override
        public <T> List<java.util.concurrent.Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
                throws InterruptedException {
            return next().invokeAll(tasks);
        }
    
        @Override
        public <T> List<java.util.concurrent.Future<T>> invokeAll(
                Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException {
            return next().invokeAll(tasks, timeout, unit);
        }
    

    3.5 invokeAny

    #invokeAll(...) 方法,在 EventExecutor 中执行多个普通任务,有一个执行完成即可,多个任务使用同一个 EventExecutor 。代码如下:

        @Override
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException {
            return next().invokeAny(tasks);
        }
    
        @Override
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit)
                throws InterruptedException, ExecutionException, TimeoutException {
            return next().invokeAny(tasks, timeout, unit);
        }
    
    

    3.6 shutdown

    #shutdown(...) 方法,关闭 EventExecutorGroup 。代码如下:

        @Override
        public Future<?> shutdownGracefully() {
            return shutdownGracefully(DEFAULT_SHUTDOWN_QUIET_PERIOD, DEFAULT_SHUTDOWN_TIMEOUT, TimeUnit.SECONDS);
        }
    
        
        @Override
        @Deprecated
        public abstract void shutdown();
    
      
        @Override
        @Deprecated
        public List<Runnable> shutdownNow() {
            shutdown();
            return Collections.emptyList();
        }
    
    
    • 具体的 #shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit)#shutdown() 方法,由子类实现。

    4. MultithreadEventExecutorGroup

    4.1 构造方法

    /**
         * EventExecutor 数组
         */
        private final EventExecutor[] children;
        /**
         * 不可变( 只读 )的 EventExecutor 数组
         */
        private final Set<EventExecutor> readonlyChildren;
        /**
         * 已终止的 EventExecutor 数量
         */
        private final AtomicInteger terminatedChildren = new AtomicInteger();
        /**
         * 用于终止 EventExecutor 的异步 Future
         */
        private final Promise<?> terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);
        /**
         * EventExecutor 选择器
         */
        private final EventExecutorChooserFactory.EventExecutorChooser chooser;
    
       
        protected MultithreadEventExecutorGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
            this(nThreads, threadFactory == null ? null : new ThreadPerTaskExecutor(threadFactory), args);
        }
    
       
        protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
            this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
        }
    
        
        protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
                                                EventExecutorChooserFactory chooserFactory, Object... args) {
            if (nThreads <= 0) {
                throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
            }
    
            // 创建执行器
            if (executor == null) {
                executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
            }
    
            // 创建 EventExecutor 数组
            children = new EventExecutor[nThreads];
    
            for (int i = 0; i < nThreads; i ++) {
                // 是否创建成功
                boolean success = false;
                try {
                    // 创建 EventExecutor 对象,newChild抽象方法,具体有子类实现
                    children[i] = newChild(executor, args);
                    // 标记创建成功
                    success = true;
                } catch (Exception e) {
                    // 创建失败,抛出 IllegalStateException 异常
                    // TODO: Think about if this is a good exception type
                    throw new IllegalStateException("failed to create a child event loop", e);
                } finally {
                    // 创建失败,关闭所有已创建的 EventExecutor
                    if (!success) {
                        // 优雅的关闭所有已创建的 EventExecutor,只负责关闭线程,并不知道关闭的结果
                        for (int j = 0; j < i; j ++) {
                            children[j].shutdownGracefully();
                        }
                        // 确保所有已创建的 EventExecutor 已关闭
                        for (int j = 0; j < i; j ++) {
                            EventExecutor e = children[j];
                            try {
                                //isTerminated() 若关闭后所有任务都已完成,则返回true。注意除非首先调用shutdown或shutdownNow,否则isTerminated永不为true。
                                // 返回:若关闭后所有任务都已完成,则返回true。
                                while (!e.isTerminated()) {
                                    //等所有已提交的任务(包括正在跑的和队列中等待的)执行完
                                    //或者等超时时间到
                                    //或者线程被中断,抛出InterruptedException
                                    e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
                                }
                            } catch (InterruptedException interrupted) {
                                // Let the caller handle the interruption.
                                Thread.currentThread().interrupt();
                                break;
                            }
                        }
                    }
                }
            }
    
            // 创建 EventExecutor 选择器
            chooser = chooserFactory.newChooser(children);
    
            // 创建监听器,用于 EventExecutor 终止时的监听
            //回调的具体逻辑是,当所有 EventExecutor 都终止完成时,
            // 通过调用 Future#setSuccess(V result) 方法,通知监听器们。至于为什么设置的值是 null ,因为监听器们不关注具体的结果。
            final FutureListener<Object> terminationListener = new FutureListener<Object>() {
                @Override
                public void operationComplete(Future<Object> future) throws Exception {
                     // 线程池中的线程每终止一个增加记录数,直到全部终止设置线程池异步终止结果为成功
                    if (terminatedChildren.incrementAndGet() == children.length) {// 全部关闭
                        terminationFuture.setSuccess(null);// 设置结果,并通知监听器们。
                    }
                }
            };
    
            // 设置监听器到每个 EventExecutor 上
            for (EventExecutor e: children) {
                e.terminationFuture().addListener(terminationListener);
            }
    
            // 创建不可变( 只读 )的 EventExecutor 数组
            Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
            Collections.addAll(childrenSet, children);
            //设置不可变的EventExecutor集合
            readonlyChildren = Collections.unmodifiableSet(childrenSet);
        }
    

    4.2 ThreadPerTaskExecutor

    • 创建执行器的代码如下:
    // 创建执行器
            if (executor == null) {
                executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
            }
    
    

    具体看下 ThreadPerTaskExecutor这个类,代码如下:

    
    /**
     * 实现 Executor 接口,每个任务一个线程的执行器实现类
     */
    public final class ThreadPerTaskExecutor implements Executor {
        /**
         * 线程工厂对象
         * Netty 实现自定义的 ThreadFactory 类,为 io.netty.util.concurrent.DefaultThreadFactory
         */
        private final ThreadFactory threadFactory;
    
        public ThreadPerTaskExecutor(ThreadFactory threadFactory) {
            if (threadFactory == null) {
                throw new NullPointerException("threadFactory");
            }
            this.threadFactory = threadFactory;
        }
        /**
         * 执行任务
         *
         * @param command 任务
         *
         *  通过 ThreadFactory#newThread(Runnable) 方法,创建一个 Thread ,然后调用 Thread#start() 方法,启动线程执行任务
         */
        @Override
        public void execute(Runnable command) {
            threadFactory.newThread(command).start();
        }
    }
    
    
    • io.netty.util.concurrent.ThreadPerTaskExecutor ,实现 Executor 接口,每个任务一个线程的执行器实现类

    • threadFactory 属性,线程工程实例,通过构造方法来初始化,Netty 实现自定义的 ThreadFactory 类,为 io.netty.util.concurrent.DefaultThreadFactory 具体的创建看如下方法,创建默认的线程工厂类

    • /**
          * 创建线程工厂对象,并且使用类名作为 poolType
          * @return
          */
         protected ThreadFactory newDefaultThreadFactory() {
             return new DefaultThreadFactory(getClass());
         }
      
    • #execute(Runnable command) 方法,通过 ThreadFactory#newThread(Runnable) 方法,创建一个 Thread ,然后调用 Thread#start() 方法,启动线程执行任务

    4.3 DefaultThreadFactory

    4.4 EventExecutorChooserFactory

    io.netty.util.concurrent.EventExecutorChooserFactory ,EventExecutorChooser 工厂接口。代码如下:

    /**
     * Factory that creates new {@link EventExecutorChooser}s.
     *
     * EventExecutorChooser 工厂接口
     */
    @UnstableApi
    public interface EventExecutorChooserFactory {
    
        /**
         * Returns a new {@link EventExecutorChooser}.
         *
         * 创建一个 EventExecutorChooser 对象
         */
        EventExecutorChooser newChooser(EventExecutor[] executors);
    
        /**
         * Chooses the next {@link EventExecutor} to use.
         *
         * EventExecutor 选择器接口
         */
        @UnstableApi
        interface EventExecutorChooser {
    
            /**
             * Returns the new {@link EventExecutor} to use.
             *
             * 选择下一个 EventExecutor 对象
             */
            EventExecutor next();
        }
    }
    
    • #newChooser(EventExecutor[] executors) 方法,创建一个 EventExecutorChooser 对象;
    • EventExecutorChooser 接口,EventExecutor 选择器接口。
      • #next() 方法选择下一个 EventExecutor对象;

    4.4.1 DefaultEventExecutorChooserFactory

    io.netty.util.concurrent.DefaultEventExecutorChooserFactory ,实现 EventExecutorChooserFactory 接口,默认 EventExecutorChooser 工厂实现类。代码如下

    
    /**
     * Default implementation which uses simple round-robin to choose next {@link EventExecutor}.
     *
     * 实现 EventExecutorChooserFactory 接口,默认 EventExecutorChooser 工厂实现类
     */
    @UnstableApi
    public final class DefaultEventExecutorChooserFactory implements EventExecutorChooserFactory {
        /**
         * 单例
         */
        public static final DefaultEventExecutorChooserFactory INSTANCE = new DefaultEventExecutorChooserFactory();
    
        private DefaultEventExecutorChooserFactory() { }
    
        @SuppressWarnings("unchecked")
        @Override
        public EventExecutorChooser newChooser(EventExecutor[] executors) {
            if (isPowerOfTwo(executors.length)) {// 是否为 2 的幂次方
                return new PowerOfTwoEventExecutorChooser(executors);
            } else {
                return new GenericEventExecutorChooser(executors);
            }
        }
    
        /**
         * 是否为 2 的幂次方
         * @param val
         * @return
         */
        private static boolean isPowerOfTwo(int val) {
            return (val & -val) == val;
        }  
    }
    
    
    • DefaultEventExecutorChooserFactory是个单例;
    • Netty实现了两个线程选择器,虽然代码不一致,功能都是一样的:每次选择索引为上一次所选线程索引+1的线程
    • #newChooser(EventExecutor[] executors)创建具体的选择器,根据#isPowerOfTwo(executors.length)方法来判断,创建哪种选择器,EventExecutor 数组的大小是否为 2 的幂次方,如果是,创建PowerOfTwoEventExecutorChooser选择器,不是则创建GenericEventExecutorChooser选择器;
    • #isPowerOfTwo(int val) 方法,为什么 (val & -val) == val 可以判断数字是否为 2 的幂次方呢?

    ​ 我们以 8 来举个例子:

          - 8 的二进制为 `1000` 
          - -8 的二进制使用补码表示。所以,先求反生成反码为 `0111` ,然后加一生成补码为 `1000` 
          - 8 和 -8 与操作后,还是 8 。与操作是都为1则为1,其他都为0,所以结果还是1000&1000还是1000;
          - 实际上,以 2 为幂次方的数字,都是最高位为 1 ,剩余位为 0 ,所以对应的负数,求完补码还是自己
    

    4.4.2 PowerOfTwoEventExecutorChooser

    PowerOfTwoEventExecutorChooser 实现 EventExecutorChooser 接口,基于 EventExecutor 数组的大小为 2 的幂次方的 EventExecutor 选择器实现类。这是一个优化的实现,线程池数量使用2的幂次方,这样线程池选择线程时使用位操作,能使性能最高,PowerOfTwoEventExecutorChooser 是 DefaultEventExecutorChooserFactory 的静态内部类,代码如下:

     /**
         *  实现 EventExecutorChooser 接口,基于 EventExecutor 数组的大小为 2 的幂次方的 EventExecutor 选择器实现类
         */
        private static final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser {
            /**
             * 自增序列
             */
            private final AtomicInteger idx = new AtomicInteger();
            /**
             * EventExecutor 数组
             */
            private final EventExecutor[] executors;
    
            PowerOfTwoEventExecutorChooser(EventExecutor[] executors) {
                this.executors = executors;
            }
    
            /**
             * 因为 - ( 二元操作符 ) 的计算优先级高于 & ( 一元操作符 ) 。
             *
             * 因为 EventExecutor 数组的大小是以 2 为幂次方的数字,那么减一后,除了最高位是 0 ,剩余位都为 1          ( 例如 8 减一后等于 7 ,而 7 的二进制为 0111 。),
             * 那么无论 idx 无论如何递增,再进行 & 并操作,都不会超过 EventExecutor 数组的大小。并且,还能保            证顺序递增。
             * @return
             */
            @Override
            public EventExecutor next() {
                return executors[idx.getAndIncrement() & executors.length - 1];
            }
        }
    

    4.4.3 GenericEventExecutorChooser

    GenericEventExecutorChooser 实现 EventExecutorChooser 接口,通用的 EventExecutor 选择器实现类。代码如下:

    GenericEventExecutorChooser 内嵌在 DefaultEventExecutorChooserFactory 类中。

    /**
         * GenericEventExecutorChooser 内嵌在 DefaultEventExecutorChooserFactory 类中。
         *  实现 EventExecutorChooser 接口,通用的 EventExecutor 选择器实现类
         */
        private static final class GenericEventExecutorChooser implements EventExecutorChooser {
            private final AtomicInteger idx = new AtomicInteger();
            private final EventExecutor[] executors;
    
            GenericEventExecutorChooser(EventExecutor[] executors) {
                this.executors = executors;
            }
    
            /**
             * 使用 idx 自增,并使用 EventExecutor 数组的大小来取余
             * @return
             */
            @Override
            public EventExecutor next() {
                return executors[Math.abs(idx.getAndIncrement() % executors.length)];
            }
        }
    

    4.5 next

    #next() 方法,选择下一个 EventExecutor 对象。代码如下:

     /**
         * 选择下一个 EventExecutor 对象
         * @return
         */
        @Override
        public EventExecutor next() {
            return chooser.next();
        }
    

    4.6 iterator

     /**
         * 获得 EventExecutor 数组的迭代器
         * 为了避免调用方,获得迭代器后,对 EventExecutor 数组进行修改,
         * 所以返回是不可变的 EventExecutor 数组 readonlyChildren 的迭代器
         * @return
         */
        @Override
        public Iterator<EventExecutor> iterator() {
            return readonlyChildren.iterator();
        }
    

    4.7 executorCount

     /**
         * Return the number of {@link EventExecutor} this implementation uses. This number is the maps
         * 1:1 to the threads it use.
         *
         * 获得 EventExecutor 数组的大小
         */
        public final int executorCount() {
            return children.length;
        }
    

    4.8 newChild

       /**
         * Create a new EventExecutor which will later then accessible via the {@link #next()}  method. This method will be
         * called for each thread that will serve this {@link MultithreadEventExecutorGroup}.
         *
         * 抽象方法,子类实现该方法,创建其对应的 EventExecutor 实现类的对象
         *
         */
        protected abstract EventExecutor newChild(Executor executor, Object... args) throws Exception;
    

    4.9 shutdownGracefully

        @Override
        public Future<?> shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit) {
            for (EventExecutor l: children) {
                l.shutdownGracefully(quietPeriod, timeout, unit);
            }
            return terminationFuture();
        }
    
    
    • 优雅的关闭EventExecutor线程组,返回terminationFuture,在构造方法中由于已经设置了监听,如下代码,通过success属性来判断是否全部都关闭;

    • final FutureListener<Object> terminationListener = new FutureListener<Object>() {
                 @Override
                 public void operationComplete(Future<Object> future) throws Exception {
                     // 线程池中的线程每终止一个增加记录数,直到全部终止设置线程池异步终止结果为成功
                     if (terminatedChildren.incrementAndGet() == children.length) {// 全部关闭
                         terminationFuture.setSuccess(null);// 设置结果,并通知监听器们。
                     }
                 }
             };
      

    4.10 terminationFuture

        /**
         * 返回用于终止 EventExecutor 的异步 Future
         * @return
         */
        @Override
        public Future<?> terminationFuture() {
            return terminationFuture;
        }
    

    4.11 shutdown

       /**
         * 废弃的方法,EventExecutor线程组关闭
         */
        @Override
        @Deprecated
        public void shutdown() {
            for (EventExecutor l: children) {
                l.shutdown();
            }
        }
    

    4.12 isShuttingDown

        /**
         * 判断所有的EventExecutor是否在优雅的关闭,或者已经关闭,
         * 任何一个EventExecutor没有关闭则返回false
         * @return
         */
        @Override
        public boolean isShuttingDown() {
            for (EventExecutor l: children) {
                if (!l.isShuttingDown()) {
                    return false;
                }
            }
            return true;
        }
    

    4.13 isShutdown

        /**
         * 判断所有的EventExecutor是否都关闭
         * @return
         */
        @Override
        public boolean isShutdown() {
            for (EventExecutor l: children) {
                if (!l.isShutdown()) {
                    return false;
                }
            }
            return true;
        }
    

    4.14 isTerminated

        /**
         * EventExecutor线程组关闭后,所有任务是否都已完成
         * @return
         */
        @Override
        public boolean isTerminated() {
            for (EventExecutor l: children) {
                if (!l.isTerminated()) {
                    return false;
                }
            }
            return true;
        }
    

    4.15 awaitTermination

    /**
         * 等待所有的EventExecutor任务都执行完或者等待时间超时,返回任务是否都已经执行完
         * @param timeout
         * @param unit
         * @return
         * @throws InterruptedException
         */
        @Override
        public boolean awaitTermination(long timeout, TimeUnit unit)
                throws InterruptedException {
            long deadline = System.nanoTime() + unit.toNanos(timeout);
            loop: for (EventExecutor l: children) {
                for (;;) {
                    //超时则跳出loop循环
                    long timeLeft = deadline - System.nanoTime();
                    if (timeLeft <= 0) {
                        break loop;
                    }
                    //等所有已提交的任务(包括正在跑的和队列中等待的)执行完
                    //或者等超时时间到
                    //或者线程被中断,抛出InterruptedException
                    //跳出for(;;)循环
                    if (l.awaitTermination(timeLeft, TimeUnit.NANOSECONDS)) {
                        break;
                    }
                }
            }
            return isTerminated();
        }
    

    5. EventLoopGroup

    io.netty.channel.EventExecutorGroup ,继承 EventExecutorGroup 接口,EventLoop 的分组接口。代码如下:

     // ========== 实现自 EventExecutorGroup 接口 ==========
        /**
         * Return the next {@link EventLoop} to use
         * 覆盖父类接口的方法,选择下一个 EventLoop 对象
         */
        @Override
        EventLoop next();
    
        // ========== 自定义接口 ==========
    
        /**
         * 注册 Channel 到 EventLoopGroup 中的一个线程上。实际上,EventLoopGroup 会分配一个 EventLoop 给该 Channel 注册
         */
        ChannelFuture register(Channel channel);
    
      
        ChannelFuture register(ChannelPromise promise);
    
       
        @Deprecated
        ChannelFuture register(Channel channel, ChannelPromise promise);
    
    • #next() 方法,覆盖父类接口的方法,选择下一个 EventLoop 对象
    • #register(...) 方法,注册 Channel 到 EventLoopGroup 中的一个线程上。实际上,EventLoopGroup 会分配一个 EventLoop 给该 Channel 注册

    6.MultithreadEventLoopGroup

    io.netty.channel.MultithreadEventLoopGroup ,实现 EventLoopGroup 接口,继承 MultithreadEventExecutorGroup 抽象类,基于多线程的 EventLoop 的分组抽象类。

    6.1 构造方法

    /**
         * 默认 EventLoop 线程数
         * EventLoopGroup 默认拥有的 EventLoop 数量。因为一个 EventLoop 对应一个线程,所以为 CPU 数量 * 2 。
         * 为什么会 * 2 呢?因为目前 CPU 基本都是超线程,一个 CPU 可对应 2 个线程。
         * 在构造方法未传入 nThreads 方法参数时,使用 DEFAULT_EVENT_LOOP_THREADS 。
         */
        private static final int DEFAULT_EVENT_LOOP_THREADS;
    
        /**
         * 初始化线程数
         */
        static {
            DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
                    "io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
    
            if (logger.isDebugEnabled()) {
                logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
            }
        }
    
        /**
         * @see MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, Executor, Object...)
         */
        protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
            super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
        }
    
        /**
         * @see MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, ThreadFactory, Object...)
         */
        protected MultithreadEventLoopGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
            super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, threadFactory, args);
        }
    
        /**
         * @see MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, Executor,
         * EventExecutorChooserFactory, Object...)
         */
        protected MultithreadEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
                                         Object... args) {
            super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, chooserFactory, args);
        }
    
    • 主要初始化了线程数,然后调用父类的构造方法
    • 默认情况,线程数最小为1,如果配置了系统参数io.netty.eventLoopThreads,设置为该系统参数值,否则设置为核心数的2倍。

    6.2 newDefaultThreadFactory

    #newDefaultThreadFactory() 方法,创建线程工厂对象,覆盖父类方法,增加了线程优先级为 Thread.MAX_PRIORITY ,代码如下:

        /**
         * 创建线程工厂对象
         *
         * 覆盖父类方法,增加了线程优先级为 Thread.MAX_PRIORITY 。
         * @return
         */
        @Override
        protected ThreadFactory newDefaultThreadFactory() {
            return new DefaultThreadFactory(getClass(), Thread.MAX_PRIORITY);
        }
    

    6.3 next()

    #next()方法,选择下一个 EventLoop 对象,覆盖父类方法,将返回值转换成 EventLoop 类,代码如下:

        /**
         * 选择下一个 EventLoop 对象
         *
         * 覆盖父类方法,将返回值转换成 EventLoop 类
         * @return
         */
        @Override
        public EventLoop next() {
            return (EventLoop) super.next();
        }
    

    6.4 newChild

    #newChild(...) 抽象方法,创建 EventExecutor 对象,覆盖父类方法,返回值改为 EventLoop 类。

        /**
         * 抽象方法,创建 EventExecutor 对象
         *
         * 覆盖父类方法,返回值改为 EventLoop 类。
         * @param executor
         * @param args
         * @return
         * @throws Exception
         */
        @Override
        protected abstract EventLoop newChild(Executor executor, Object... args) throws Exception;
    

    6.5 register(

    #register(...)方法,注册 Channel 到 EventLoopGroup 中,通过#next() 方法来选择一个EventLoop来注册,也就是通过EventExecutorChooser选择器从线程组中选择一个;

        @Override
        public ChannelFuture register(Channel channel) {
            return next().register(channel);
        }
    
        @Override
        public ChannelFuture register(ChannelPromise promise) {
            return next().register(promise);
        }
    
        @Deprecated
        @Override
        public ChannelFuture register(Channel channel, ChannelPromise promise) {
            return next().register(channel, promise);
        }
    }
    

    7. NioEventLoopGroup

    io.netty.channel.nio.NioEventLoopGroup ,继承 MultithreadEventLoopGroup 抽象类,NioEventLoop 的分组实现类。

    7.1 构造方法

        public NioEventLoopGroup() {
            this(0);
        }
    
        
        public NioEventLoopGroup(int nThreads) {
            this(nThreads, (Executor) null);
        }
    
      
        public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
            this(nThreads, threadFactory, SelectorProvider.provider());
        }
    
        public NioEventLoopGroup(int nThreads, Executor executor) {
           
            this(nThreads, executor, SelectorProvider.provider());
        }
    
        
        public NioEventLoopGroup(
                int nThreads, ThreadFactory threadFactory, final SelectorProvider selectorProvider) {
           
            this(nThreads, threadFactory, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
        }
    
        public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory,
            final SelectorProvider selectorProvider, final SelectStrategyFactory selectStrategyFactory) {
           
            super(nThreads, threadFactory, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
        }
    
        public NioEventLoopGroup(
                int nThreads, Executor executor, final SelectorProvider selectorProvider) {
            this(nThreads, executor, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
        }
    
        public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider,
                                 final SelectStrategyFactory selectStrategyFactory) {
            super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
        }
    
        public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
                                 final SelectorProvider selectorProvider,
                                 final SelectStrategyFactory selectStrategyFactory) {
            super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory,
                    RejectedExecutionHandlers.reject());
        }
    
        public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
                                 final SelectorProvider selectorProvider,
                                 final SelectStrategyFactory selectStrategyFactory,
                                 final RejectedExecutionHandler rejectedExecutionHandler) {
            super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory, rejectedExecutionHandler);
        }
    

    构造方法比较多,主要是明确了父构造方法的 Object ... args方法参数

    • 第一个参数,selectorProviderjava.nio.channels.spi.SelectorProvider ,用于创建 Java NIO Selector 对象。
    • 第二个参数,selectStrategyFactoryio.netty.channel.SelectStrategyFactory ,选择策略工厂。详细解析,见后续文章。
    • 第三个参数,rejectedExecutionHandlerio.netty.channel.SelectStrategyFactory ,拒绝执行处理器。详细解析,见后续文章。

    7.2 newChild

    #newChild(Executor executor, Object... args) 方法,创建 NioEventLoop 对象

     
        @Override
        protected EventLoop newChild(Executor executor, Object... args) throws Exception {
            return new NioEventLoop(this, executor, (SelectorProvider) args[0],
                ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
        }
    
    • 模板方法newChild(),用来创建线程池中的单个线程,现在我们知道MultithreadEventExecutorGroupEventExecutor[] children 保存的就是NioEventLoop

    7.3 setIoRatio

    #setIoRatio(int ioRatio) 方法,设置所有 EventLoop 的 IO 任务占用执行时间的比例

    public void setIoRatio(int ioRatio) {
            for (EventExecutor e: this) {
                ((NioEventLoop) e).setIoRatio(ioRatio);
            }
        }
    
    

    7.4 rebuildSelectors

    #rebuildSelectors() 方法,重建所有 EventLoop 的 Selector 对象

       /**
         * Replaces the current {@link Selector}s of the child event loops with newly created {@link Selector}s to work
         * around the  infamous epoll 100% CPU bug.
         *
         * 重建所有 EventLoop 的 Selector 对象
         *
         * 因为 JDK 有 epoll 100% CPU Bug 。实际上,NioEventLoop 当触发该 Bug 时,
         * 也会自动调用 NioEventLoop#rebuildSelector() 方法,进行重建 Selector 对象,以修复该问题。
         */
        public void rebuildSelectors() {
            for (EventExecutor e: this) {
                ((NioEventLoop) e).rebuildSelector();
            }
        }
    
    

    源码解析好文

    相关文章

      网友评论

          本文标题:Netty源码解析—— EventLoop(二)之 EventL

          本文链接:https://www.haomeiwen.com/subject/ftspoftx.html