美文网首页
代价函数

代价函数

作者: 3e0a50393df8 | 来源:发表于2019-04-22 20:27 被阅读0次

代价函数

1、代价函数是什么?

  理解的代价函数就是用于找到最优解的目的函数,这也是代价函数的作用。

损失函数(Loss Function )是定义在单个样本上的,算的是一个样本的误差。

代价函数(Cost Function )是定义在整个训练集上的,是所有样本误差的平均,也
就是损失函数的平均。

目标函数(Object Function)定义为:最终需要优化的函数。等于经验风险+结构风险(也就是Cost Function + 正则化项)。

2、代价函数作用原理

  对于回归问题,我们需要求出代价函数来求解最优解,常用的是平方误差代价函数。  比如,对于下面的假设函数:   里面有θ0和θ1两个参数,参数的改变将会导致假设函数的变化,比如:   现实的例子中,数据会以很多点的形式给我们,我们想要解决回归问题,就需要将这些点拟合成一条直线,找到最优的θ0和θ1来使这条直线更能代表所有数据。 而如何找到最优解呢,这就需要使用代价函数来求解了,以平方误差代价函数为例。
从最简单的单一参数来看,假设函数为: 平方误差代价函数的主要思想就是将实际数据给出的值与我们拟合出的线的对应值做差,这样就能求出我们拟合出的直线与实际的差距了。 为了使这个值不受个别极端数据影响而产生巨大波动,采用类似方差再取二分之一的方式来减小个别数据的影响。这样,就产生了代价函数:

而最优解即为代价函数的最小值,根据以上公式多次计算可得到
代价函数的图像:


可以看到该代价函数的确有最小值,这里恰好是横坐标为1的时候。

如果更多参数的话,就会更为复杂,两个参数的时候就已经是三维图像了:


高度即为代价函数的值,可以看到它仍然有着最小值的,而到达更多的参数的时候就无法像这样可视化了,但是原理都是相似的。
因此,对于回归问题,我们就可以归结为得到代价函数的最小值:



3、为什么代价函数是这个呢

首先思考:什么是代价?
简单理解代价就是预测值和实际值之间的差距,那对于多个样本来说,就是差距之和。

如果我们直接使用
,这个公式看起来就是表示假设值和实际值只差,再将每一个样本的这个差值加起来不就是代价了吗,但是想一下,如果使用这个公式,那么就单个样本而言,代价有正有负,全部样本的代价加起来有可能正负相抵,所以这并不是一个合适的代价函数。

所以为了解决有正有负的问题,我们使用这里写图片描述,即绝对值函数来表示代价,为了方便计算最小代价(计算最小代价可能用到最小二乘法),我们直接使用平方来衡量代价,即使用这里写图片描述来表示单个样本的代价,那么一个数据集的代价为:这里写图片描述。

那么是否使用平方之和就没有什么问题了?
仔细想想,其实很容易想到,代价函数应该与样本的数量有关,否则一个样本和n个样本的差距平方和之间的比较也没有多少意义,所以将这里写图片描述乘以这里写图片描述,即代价函数为:这里写图片描述,这里取2m而非m,是为了方便计算。

相关文章

  • 代价函数

    代价函数 1、代价函数是什么?   理解的代价函数就是用于找到最优解的目的函数,这也是代价函数的作用。 损失函数(...

  • 线性回归

    代价函数 代价函数 梯度 正规方程 正规方程步骤

  • Tensorflow(3)

    优化MNIST分类简单版本二次代价函数VS交叉商代价函数防止过拟合 1. 二次代价函数 VS 交叉商代价函数 1...

  • 交叉熵代价函数

    交叉熵代价函数(cross-entropy cost function) 1.从方差代价函数说起 代价函数经常用方...

  • 机器学习(5)——代价函数误差分析

    代价函数简介   代价函数(Cost Function),通常也被称为损失函数(Loss Function)。这类...

  • 2019-07-27 tensorflow2

    分类 交叉熵代价函数回归 二次代价函数

  • [线性回归] 模型和代价函数

    代价函数 Cost Function 为了度量预测函数(hypothesis)的精确性,我们引入了代价函数。它用对...

  • 线性回归

    假设函数:代价函数: 梯度下降算法:

  • 3.2Logistic回归模型

    逻辑回归的代价函数 上图是之前线性回归问题时的代价函数,现将上图公式进行改写: 在线性回归问题中,代价函数会被定义...

  • 哲哲的ML笔记(十二:逻辑回归中的代价函数)

    代价函数 要定义用来拟合参数的优化目标或者叫代价函数 对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。...

网友评论

      本文标题:代价函数

      本文链接:https://www.haomeiwen.com/subject/ftwugqtx.html