模块:
- 线性回归函数
- sigmoid函数
- cost损失函数
- 二分类逻辑回归
- 梯度计算
1、线性回归函数
def model(X, theta):
return sigmoid(np.dot(X, theta.T))
2、 sigmoid函数
def sigmoid(z):
return 1 / (1 + np.exp(-z))
3、 二分类逻辑回归:
对于每一个样本:
预测分类 为类别1 的概率函数:
预测分类 为类别0 的概率函数:
合并函数(y=1):
所有样本累乘取得似然函数:
对数似然:
4、cost损失函数
损失函数即是对数似然加负号
1)对数似然求的是每个样本的 预测值==真实值 的概率
2)损失函数是每个样本的 预测值 != 真实值 的衡量标准
def cost(X, y, theta):
left = np.multiply(-y, np.log(model(X, theta)))
right = np.multiply(1 - y, np.log(1 - model(X, theta)))
return np.sum(left - right) / (len(X))
5、梯度计算
def gradient(X, y, theta):
grad = np.zeros(theta.shape)
error = (model(X, theta)- y).ravel()
for j in range(len(theta.ravel())): #for each parmeter
term = np.multiply(error, X[:,j])
grad[0, j] = np.sum(term) / len(X)
return grad
总结:
- 当样本数很大时,使用批量下降法很费时
- 小的学习率可以使cost下降比较稳定
- 对数据预处理可以使cost下降比较稳定
- 更多的迭代次数可以使cost损失下降的更多
- 对于大数据,使用小批量数据梯度下降法不仅能解决速度问题,还可以多增加迭代次数
完整代码:
import time
import numpy as np
import pandas as pd
pdData = pd.read_csv('LogiReg_data.txt', header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
## 数据预处理
pdData.insert(0, 'Ones', 1) # 特征 (1, x1, x2, x3, ... , xn)
data = pdData.values
X = data[:, :-1]
y = data[:, -1]
theta = np.zeros(X.shape[1])
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2
def stopCriterion(type, value, threshold):
# 设定三种不同的停止策略
if type == STOP_ITER:
return value > threshold
elif type == STOP_COST:
return abs(value[-1] - value[-2]) < threshold
elif type == STOP_GRAD:
return np.linalg.norm(value) < threshold
def shuffleData(data):
np.random.shuffle(data)
X = data[:, :-1]
y = data[:, -1]
return X, y
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def model(X, theta):
return sigmoid(np.dot(X, theta.T))
def cost(X, y, theta):
left = np.multiply(-y, np.log(model(X, theta)))
right = np.multiply(1 - y, np.log(1 - model(X, theta)))
return np.sum(left - right) / len(X)
def gradient(X, y, theta):
grad = np.zeros(theta.shape)
error = model(X, theta) - y
for j in range(len(theta)):
term = np.multiply(error, X[:, j])
grad[j] = np.sum(term) / len(X)
return grad
def descent(data, theta, batchSize, stopType, thresh, alpha):
# 1 < batchSize < n 时,使用 小批量梯度下降法
# batchSize = n 时,使用 批量梯度下降法
# batchSize = 1 时,使用 随机梯度下降法
init_time = time.time()
m, n = data.shape
i = 0
k = 0
X, y = shuffleData(data)
grad = np.zeros(theta.shape)
costs = [cost(X, y, theta)]
while True:
grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
k += batchSize
if k >= n:
k = 0
X, y = shuffleData(data)
theta = theta - alpha * grad
costs.append(cost(X, y, theta)) # 计算新的损失
i += 1
if stopType == STOP_ITER:
value = i
elif stopType == STOP_COST:
value = costs
elif stopType == STOP_GRAD:
value = grad
if stopCriterion(stopType, value, thresh): break
return theta, i - 1, costs, grad, time.time() - init_time
def runExpe(data, theta, batchSize, stopType, thresh, alpha):
theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
name = "Original" if (data[:, 1] > 2).sum() > 1 else "Scaled"
name += " data - learning rate: {} - ".format(alpha)
if batchSize == n:
strDescType = "Gradient"
elif batchSize == 1:
strDescType = "Stochastic"
else:
strDescType = "Mini-batch ({})".format(batchSize)
name += strDescType + " descent - Stop: "
if stopType == STOP_ITER:
strStop = "{} iterations".format(thresh)
elif stopType == STOP_COST:
strStop = "costs change < {}".format(thresh)
else:
strStop = "gradient norm < {}".format(thresh)
name += strStop
print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
name, theta, iter, costs[-1], dur))
return theta
n = 100
runExpe(data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
网友评论