kNN

作者: xbinng | 来源:发表于2017-10-10 19:21 被阅读0次
    #coding=utf8  
    #KNN.py  
    from numpy import *  
    import operator  
      
    def createDataSet():  
        group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])      #我觉得可以这样理解,每一种方括号都是一个维度(秩),这里就是二维数组,最里面括着每一行的有一个方括号,后面又有一个,就是二维,四行  
        labels=['A','A','B','B']  
        return group,labels  
      
    def classify0(inX,dataSet,labels,k):                  #inX是你要输入的要分类的“坐标”,dataSet是上面createDataSet的array,就是已经有的,分类过的坐标,label是相应分类的标签,k是KNN,k近邻里面的k  
        dataSetSize=dataSet.shape[0]                     #dataSetSize是sataSet的行数,用上面的举例就是4行  
        diffMat=tile(inX,(dataSetSize,1))-dataSet         #前面用tile,把一行inX变成4行一模一样的(tile有重复的功能,dataSetSize是重复4遍,后面的1保证重复完了是4行,而不是一行里有四个一样的),然后再减去dataSet,是为了求两点的距离,先要坐标相减,这个就是坐标相减  
        sqDiffMat=diffMat**2                              #上一行得到了坐标相减,然后这里要(x1-x2)^2,要求乘方  
        sqDistances=sqDiffMat.sum(axis=1)                 #axis=1是行相加,,这样得到了(x1-x2)^2+(y1-y2)^2  
        distances=sqDistances**0.5                        #开根号,这个之后才是距离  
        sortedDistIndicies=distances.argsort()            #argsort是排序,将元素按照由小到大的顺序返回下标,比如([3,1,2]),它返回的就是([1,2,0])  
        classCount={}  
        for i in range(k):  
            voteIlabel=labels[sortedDistIndicies[i]]  
            classCount[voteIlabel]=classCount.get(voteIlabel,0)+1            #get是取字典里的元素,如果之前这个voteIlabel是有的,那么就返回字典里这个voteIlabel里的值,如果没有就返回0(后面写的),这行代码的意思就是算离目标点距离最近的k个点的类别,这个点是哪个类别哪个类别就加1  
        soredClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)         #key=operator.itemgetter(1)的意思是按照字典里的第一个排序,{A:1,B:2},要按照第1个(AB是第0个),即‘1’‘2’排序。reverse=True是降序排序  
        return soredClassCount[0][0]             #返回类别最多的类别  
    

    转载自http://blog.csdn.net/fenfenmiao/article/details/52165472

    相关文章

      网友评论

          本文标题:kNN

          本文链接:https://www.haomeiwen.com/subject/fwsbyxtx.html