美文网首页
GSEA | 基因富集分析

GSEA | 基因富集分析

作者: 可爱的一只帆 | 来源:发表于2023-04-30 17:15 被阅读0次

    软件下载网址:GSEA (gsea-msigdb.org)
    GSEA不需要设置阈值过滤基因,有助于我们从整体通路分析差异。 一. 数据准备

    1.数据集(tpm_bulk.gct):你需要分析的表达矩阵,建议bulk数据用tpm标准化后的
    第一行:#1.2默认的,不用改。
    第二行:矩阵总共的基因数量和样本数量。
    第三行及下:你的表达矩阵,Description不能为空,可以是na。

    可以在excel里处理文件,保存为制表符分隔文件(.txt),直接重命名改后缀为gct即可。 2.样本信息表(DATA_info.cls)

    第一行:样品总数、分组数、不用改的数字1。
    第二行:样品分组名称
    第三行:样品分组信息,与.gct文件对应。

    3.参考基因集(geneset.gmt) 第一列:通路名称
    第二列:通路编号

    第三列及之后:该通路包含的所有基因,基因名称需要与.gct文件中的基因名称一致。
    常用的有KEGG和GO基因集,获取基因集的方法:
    1)MSigDB官网以及GSEA软件自带的基因集,大部分是有的,但是比KEGG官网上少了很多,官网也有一直在更新,MSigDB官网和GSEA软件没有跟上
    2)自己去官网下载制作,生信技能树之前有提到过
    3)最近看到python爬取KEGG数据库的,使用更方便,研究中……

    二.软件使用

    1. 上传数据(load data)
      直接上传前面准备的三个文件即可,成功了会提示No Error。



      2.参数设置
      Expression dataset:选择上传的表达矩阵.gct
      Gene sets database:选择上传或自带的基因集.gmt
      Number of permutations:置换检验的次数,一般为1000
      Phenotype labels:需要比较的两组,.cls文件的分组,实验组比对照组。
      Collapse/Remap to gene symbols:基因symbol转换,文件的基因都是symbol就选No。
      Permutation type:每组样本数量大于7选phenotype,否则选gene_set。



      Analysis name:输出的文件名

      Plot graphs for the top sets of each phenotype:最终画图的数量

      3.运行:直接Run
      4.查看结果
      运行完左侧这里会出现文件名和succes,双击可以打开网页查看结果,一般通过|NES|>1&p-value<5%&FDR q-val<25%筛选结果,如果数量太多可以更严格一些筛选,或者考虑是不是输入的文件有问题。

    相关文章

      网友评论

          本文标题:GSEA | 基因富集分析

          本文链接:https://www.haomeiwen.com/subject/fzpnjdtx.html