美文网首页
Floyd-Steinberg抖动算法处理价签图片-高度还原的图

Floyd-Steinberg抖动算法处理价签图片-高度还原的图

作者: archerdu | 来源:发表于2019-09-29 17:00 被阅读0次

原文链接:https://blog.csdn.net/weixin_34406061/article/details/92425842

本文只做细微改动

package com.example;

import java.awt.image.BufferedImage;

/**
 * Floyd-Steinberg抖动算法 工具类
 *
 * @author duxuefu
 * @date 2019-09-16
 */
public class BMPConverterUtil {

    /**
     * 黑白屏
     */
    public final static int PALETTE_BW = 0;

    /**
     * 黑白红屏
     */
    public final static int PALETTE_BWR = 1;

    /**
     * 黑白黄屏
     */
    public final static int PALETTE_BWY = 2;

    /**
     * 取二值化屏幕类型
     *
     * @param deviceType 屏幕类型
     * @return RGBTriple[]
     * @see RGBTriple
     */
    public static RGBTriple[] getPalette(int deviceType) {
        final RGBTriple[] palette;

        if (deviceType == 1) {
            //黑白红价签
            palette = new RGBTriple[]{new RGBTriple(0, 0, 0), new RGBTriple(255, 255, 255), new RGBTriple(255, 0, 0)};
        } else if (deviceType == 2) {
            //黑白黄价签
            palette = new RGBTriple[]{new RGBTriple(0, 0, 0), new RGBTriple(255, 255, 255), new RGBTriple(255, 255, 0)};
        } else {
            //黑白价签
            palette = new RGBTriple[]{new RGBTriple(0, 0, 0), new RGBTriple(255, 255, 255)};
        }
        return palette;
    }

    /**
     * 核心算法,二值化处理
     *
     * @param image   图片
     * @param palette 屏幕类型
     * @return 二值化数组, 0表示黑,1表示白,2表示红或黄(假定红和黄色不同时存在)
     */
    public static byte[][] floydSteinbergDither(RGBTriple[][] image, RGBTriple[] palette) {
        byte[][] result = new byte[image.length][image[0].length];


        for (int y = 0; y < image.length; y++) {
            for (int x = 0; x < image[y].length; x++) {
                RGBTriple currentPixel = image[y][x];
                byte index = findNearestColor(currentPixel, palette);
                result[y][x] = index;

                for (int i = 0; i < 3; i++) {
                    int error = (currentPixel.channels[i] & 0xff) - (palette[index].channels[i] & 0xff);
                    if (x + 1 < image[0].length) {
                        image[y][x + 1].channels[i] = plus_truncate_uchar(image[y][x + 1].channels[i], (error * 7) >> 4);
                    }
                    if (y + 1 < image.length) {
                        if (x - 1 > 0) {
                            image[y + 1][x - 1].channels[i] = plus_truncate_uchar(image[y + 1][x - 1].channels[i], (error * 3) >> 4);
                        }
                        image[y + 1][x].channels[i] = plus_truncate_uchar(image[y + 1][x].channels[i], (error * 5) >> 4);
                        if (x + 1 < image[0].length) {
                            image[y + 1][x + 1].channels[i] = plus_truncate_uchar(image[y + 1][x + 1].channels[i], (error) >> 4);
                        }
                    }

                }

            }
        }
        return result;
    }

    /**
     * 转换图片
     *
     * @param bufferedImage    原图
     * @param newBufferedImage 二值化后图片
     * @param deviceType       屏幕类型
     */
    public static void floydSteinberg(BufferedImage bufferedImage, BufferedImage newBufferedImage, int deviceType) {
        int width = bufferedImage.getWidth();
        int height = bufferedImage.getHeight();
        RGBTriple[][] image = new RGBTriple[width][height];
        for (int i = 0; i < width; i++) {
            for (int j = 0; j < height; j++) {
                int pixel = bufferedImage.getRGB(i, j);
                int rx = (pixel & 0xff0000) >> 16;
                int gx = (pixel & 0xff00) >> 8;
                int bx = (pixel & 0xff);
                RGBTriple rgbTriple = new RGBTriple(rx, gx, bx);
                image[i][j] = rgbTriple;
            }
        }

        byte[][] to = floydSteinbergDither(image, getPalette(deviceType));
        for (int i = 0; i < to.length; i++) {
            for (int j = 0; j < to[i].length; j++) {
                System.out.println(to[i][j]);
                if (to[i][j] == 0) {
                    // 处理黑色
                    newBufferedImage.setRGB(i, j, 0);
                } else if (to[i][j] == 1) {
                    // 处理白色
                    newBufferedImage.setRGB(i, j, (255 << 16) + (255 << 8) + 255);
                } else if (to[i][j] == 2 && deviceType == 1) {
                    // 处理红色
                    newBufferedImage.setRGB(i, j, (255 << 16));
                } else if (to[i][j] == 2 && deviceType == 2) {
                    // 处理黄色
                    newBufferedImage.setRGB(i, j, (255 << 16) + (255 << 8));
                }
            }
        }
    }

    /**
     * @param a
     * @param b
     * @return
     */
    private static byte plus_truncate_uchar(byte a, int b) {
        if ((a & 0xff) + b < 0) {
            return 0;
        } else if ((a & 0xff) + b > 255) {
            return (byte) 255;
        } else {
            return (byte) (a + b);
        }
    }

    /**
     * @param color
     * @param palette
     * @return
     */
    private static byte findNearestColor(RGBTriple color, RGBTriple[] palette) {
        int minDistanceSquared = 255 * 255 + 255 * 255 + 255 * 255 + 1;
        byte bestIndex = 0;
        for (byte i = 0; i < palette.length; i++) {
            int Rdiff = (color.channels[0] & 0xff) - (palette[i].channels[0] & 0xff);
            int Gdiff = (color.channels[1] & 0xff) - (palette[i].channels[1] & 0xff);
            int Bdiff = (color.channels[2] & 0xff) - (palette[i].channels[2] & 0xff);
            int distanceSquared = Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff;
            if (distanceSquared < minDistanceSquared) {
                minDistanceSquared = distanceSquared;
                bestIndex = i;
            }
        }
        return bestIndex;
    }

    /**
     * 二值化颜色类
     *
     * @author duxuefu
     * @date 2019-09-16
     */
    public static class RGBTriple {
        public final byte[] channels;

        public RGBTriple(int R, int G, int B) {
            channels = new byte[]{(byte) R, (byte) G, (byte) B};
        }
    }
}

测试类

package binaryzation;

import com.jd.jr.innovation.common.util.BMPConverterUtil;
import org.junit.Test;

import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

/**
 * 类描述
 *
 * @author duxuefu
 * @date 2019-09-16
 */
public class FloydSteinbergTest {

    @Test
    public void binaryzation() {
        // 原图
        String from = "d:/image/5b7620e1N058c3b11.jpg";
        // 二值化后图片
        String toFloyd = "d:/image/Floyd.png";
        String toFloydForRed = "d:/image/FloydForRed.png";
        String toFloydForYellow = "d:/image/FloydForYellow.png";
        try {
            // 黑白
            BufferedImage bufferedImage = ImageIO.read(new File(from));
            BufferedImage binaryBufferedImage = new BufferedImage(bufferedImage.getWidth(), bufferedImage.getHeight(), BufferedImage.TYPE_INT_BGR);
            BMPConverterUtil.floydSteinberg(bufferedImage, binaryBufferedImage, BMPConverterUtil.PALETTE_BW);
            ImageIO.write(binaryBufferedImage, "png", new File(toFloyd));
            // 黑白红
            BufferedImage binaryBufferedImageForRed = new BufferedImage(bufferedImage.getWidth(), bufferedImage.getHeight(), BufferedImage.TYPE_INT_BGR);
            BMPConverterUtil.floydSteinberg(bufferedImage, binaryBufferedImageForRed, BMPConverterUtil.PALETTE_BWR);
            ImageIO.write(binaryBufferedImageForRed, "png", new File(toFloydForRed));
            // 黑白黄
            BufferedImage binaryBufferedImageForYellow = new BufferedImage(bufferedImage.getWidth(), bufferedImage.getHeight(), BufferedImage.TYPE_INT_BGR);
            BMPConverterUtil.floydSteinberg(bufferedImage, binaryBufferedImageForYellow, BMPConverterUtil.PALETTE_BWY);
            ImageIO.write(binaryBufferedImageForYellow, "png", new File(toFloydForYellow));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

}

测试效果

原图


5b7620e1N058c3b11.jpg

黑白图


Floyd.png

黑白红


FloydForRed.png

黑白黄


FloydForYellow.png

相关文章

网友评论

      本文标题:Floyd-Steinberg抖动算法处理价签图片-高度还原的图

      本文链接:https://www.haomeiwen.com/subject/gaahuctx.html