美文网首页
Floyd-Steinberg抖动算法处理价签图片-高度还原的图

Floyd-Steinberg抖动算法处理价签图片-高度还原的图

作者: archerdu | 来源:发表于2019-09-29 17:00 被阅读0次

    原文链接:https://blog.csdn.net/weixin_34406061/article/details/92425842

    本文只做细微改动

    package com.example;
    
    import java.awt.image.BufferedImage;
    
    /**
     * Floyd-Steinberg抖动算法 工具类
     *
     * @author duxuefu
     * @date 2019-09-16
     */
    public class BMPConverterUtil {
    
        /**
         * 黑白屏
         */
        public final static int PALETTE_BW = 0;
    
        /**
         * 黑白红屏
         */
        public final static int PALETTE_BWR = 1;
    
        /**
         * 黑白黄屏
         */
        public final static int PALETTE_BWY = 2;
    
        /**
         * 取二值化屏幕类型
         *
         * @param deviceType 屏幕类型
         * @return RGBTriple[]
         * @see RGBTriple
         */
        public static RGBTriple[] getPalette(int deviceType) {
            final RGBTriple[] palette;
    
            if (deviceType == 1) {
                //黑白红价签
                palette = new RGBTriple[]{new RGBTriple(0, 0, 0), new RGBTriple(255, 255, 255), new RGBTriple(255, 0, 0)};
            } else if (deviceType == 2) {
                //黑白黄价签
                palette = new RGBTriple[]{new RGBTriple(0, 0, 0), new RGBTriple(255, 255, 255), new RGBTriple(255, 255, 0)};
            } else {
                //黑白价签
                palette = new RGBTriple[]{new RGBTriple(0, 0, 0), new RGBTriple(255, 255, 255)};
            }
            return palette;
        }
    
        /**
         * 核心算法,二值化处理
         *
         * @param image   图片
         * @param palette 屏幕类型
         * @return 二值化数组, 0表示黑,1表示白,2表示红或黄(假定红和黄色不同时存在)
         */
        public static byte[][] floydSteinbergDither(RGBTriple[][] image, RGBTriple[] palette) {
            byte[][] result = new byte[image.length][image[0].length];
    
    
            for (int y = 0; y < image.length; y++) {
                for (int x = 0; x < image[y].length; x++) {
                    RGBTriple currentPixel = image[y][x];
                    byte index = findNearestColor(currentPixel, palette);
                    result[y][x] = index;
    
                    for (int i = 0; i < 3; i++) {
                        int error = (currentPixel.channels[i] & 0xff) - (palette[index].channels[i] & 0xff);
                        if (x + 1 < image[0].length) {
                            image[y][x + 1].channels[i] = plus_truncate_uchar(image[y][x + 1].channels[i], (error * 7) >> 4);
                        }
                        if (y + 1 < image.length) {
                            if (x - 1 > 0) {
                                image[y + 1][x - 1].channels[i] = plus_truncate_uchar(image[y + 1][x - 1].channels[i], (error * 3) >> 4);
                            }
                            image[y + 1][x].channels[i] = plus_truncate_uchar(image[y + 1][x].channels[i], (error * 5) >> 4);
                            if (x + 1 < image[0].length) {
                                image[y + 1][x + 1].channels[i] = plus_truncate_uchar(image[y + 1][x + 1].channels[i], (error) >> 4);
                            }
                        }
    
                    }
    
                }
            }
            return result;
        }
    
        /**
         * 转换图片
         *
         * @param bufferedImage    原图
         * @param newBufferedImage 二值化后图片
         * @param deviceType       屏幕类型
         */
        public static void floydSteinberg(BufferedImage bufferedImage, BufferedImage newBufferedImage, int deviceType) {
            int width = bufferedImage.getWidth();
            int height = bufferedImage.getHeight();
            RGBTriple[][] image = new RGBTriple[width][height];
            for (int i = 0; i < width; i++) {
                for (int j = 0; j < height; j++) {
                    int pixel = bufferedImage.getRGB(i, j);
                    int rx = (pixel & 0xff0000) >> 16;
                    int gx = (pixel & 0xff00) >> 8;
                    int bx = (pixel & 0xff);
                    RGBTriple rgbTriple = new RGBTriple(rx, gx, bx);
                    image[i][j] = rgbTriple;
                }
            }
    
            byte[][] to = floydSteinbergDither(image, getPalette(deviceType));
            for (int i = 0; i < to.length; i++) {
                for (int j = 0; j < to[i].length; j++) {
                    System.out.println(to[i][j]);
                    if (to[i][j] == 0) {
                        // 处理黑色
                        newBufferedImage.setRGB(i, j, 0);
                    } else if (to[i][j] == 1) {
                        // 处理白色
                        newBufferedImage.setRGB(i, j, (255 << 16) + (255 << 8) + 255);
                    } else if (to[i][j] == 2 && deviceType == 1) {
                        // 处理红色
                        newBufferedImage.setRGB(i, j, (255 << 16));
                    } else if (to[i][j] == 2 && deviceType == 2) {
                        // 处理黄色
                        newBufferedImage.setRGB(i, j, (255 << 16) + (255 << 8));
                    }
                }
            }
        }
    
        /**
         * @param a
         * @param b
         * @return
         */
        private static byte plus_truncate_uchar(byte a, int b) {
            if ((a & 0xff) + b < 0) {
                return 0;
            } else if ((a & 0xff) + b > 255) {
                return (byte) 255;
            } else {
                return (byte) (a + b);
            }
        }
    
        /**
         * @param color
         * @param palette
         * @return
         */
        private static byte findNearestColor(RGBTriple color, RGBTriple[] palette) {
            int minDistanceSquared = 255 * 255 + 255 * 255 + 255 * 255 + 1;
            byte bestIndex = 0;
            for (byte i = 0; i < palette.length; i++) {
                int Rdiff = (color.channels[0] & 0xff) - (palette[i].channels[0] & 0xff);
                int Gdiff = (color.channels[1] & 0xff) - (palette[i].channels[1] & 0xff);
                int Bdiff = (color.channels[2] & 0xff) - (palette[i].channels[2] & 0xff);
                int distanceSquared = Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff;
                if (distanceSquared < minDistanceSquared) {
                    minDistanceSquared = distanceSquared;
                    bestIndex = i;
                }
            }
            return bestIndex;
        }
    
        /**
         * 二值化颜色类
         *
         * @author duxuefu
         * @date 2019-09-16
         */
        public static class RGBTriple {
            public final byte[] channels;
    
            public RGBTriple(int R, int G, int B) {
                channels = new byte[]{(byte) R, (byte) G, (byte) B};
            }
        }
    }
    
    

    测试类

    package binaryzation;
    
    import com.jd.jr.innovation.common.util.BMPConverterUtil;
    import org.junit.Test;
    
    import javax.imageio.ImageIO;
    import java.awt.image.BufferedImage;
    import java.io.File;
    import java.io.IOException;
    
    /**
     * 类描述
     *
     * @author duxuefu
     * @date 2019-09-16
     */
    public class FloydSteinbergTest {
    
        @Test
        public void binaryzation() {
            // 原图
            String from = "d:/image/5b7620e1N058c3b11.jpg";
            // 二值化后图片
            String toFloyd = "d:/image/Floyd.png";
            String toFloydForRed = "d:/image/FloydForRed.png";
            String toFloydForYellow = "d:/image/FloydForYellow.png";
            try {
                // 黑白
                BufferedImage bufferedImage = ImageIO.read(new File(from));
                BufferedImage binaryBufferedImage = new BufferedImage(bufferedImage.getWidth(), bufferedImage.getHeight(), BufferedImage.TYPE_INT_BGR);
                BMPConverterUtil.floydSteinberg(bufferedImage, binaryBufferedImage, BMPConverterUtil.PALETTE_BW);
                ImageIO.write(binaryBufferedImage, "png", new File(toFloyd));
                // 黑白红
                BufferedImage binaryBufferedImageForRed = new BufferedImage(bufferedImage.getWidth(), bufferedImage.getHeight(), BufferedImage.TYPE_INT_BGR);
                BMPConverterUtil.floydSteinberg(bufferedImage, binaryBufferedImageForRed, BMPConverterUtil.PALETTE_BWR);
                ImageIO.write(binaryBufferedImageForRed, "png", new File(toFloydForRed));
                // 黑白黄
                BufferedImage binaryBufferedImageForYellow = new BufferedImage(bufferedImage.getWidth(), bufferedImage.getHeight(), BufferedImage.TYPE_INT_BGR);
                BMPConverterUtil.floydSteinberg(bufferedImage, binaryBufferedImageForYellow, BMPConverterUtil.PALETTE_BWY);
                ImageIO.write(binaryBufferedImageForYellow, "png", new File(toFloydForYellow));
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    
    }
    
    

    测试效果

    原图


    5b7620e1N058c3b11.jpg

    黑白图


    Floyd.png

    黑白红


    FloydForRed.png

    黑白黄


    FloydForYellow.png

    相关文章

      网友评论

          本文标题:Floyd-Steinberg抖动算法处理价签图片-高度还原的图

          本文链接:https://www.haomeiwen.com/subject/gaahuctx.html