1 什么是java内存模型
Java虚拟机规范中定义了Java内存模型(Java Memory Model,JMM),用于屏蔽掉各种硬件和操作系统的内存访问差异,
以实现让Java程序在各种平台下都能达到一致的并发效果,JMM规范了Java虚拟机与计算机内存是如何协同工作的:
规定了一个线程如何以及何时可以看到由其他线程修改过后的共享变量的值,以及在必须时如何同步的访问共享变量。
2 硬件架构
2.1 硬件架构介绍
物理硬件架构如下图。
jmm-hardware.jpg
多CPU: 一个现代计算机通常由两个或者多个CPU。其中一些CPU还有多核。从这一点可以看出,在一个有两个或者多个CPU的现代计算机上同时运行多个线程是可能的。每个CPU在某一时刻运行一个线程是没有问题的。这意味着,如果你的Java程序是多线程的,在你的Java程序中每个CPU上一个线程可能同时(并发)执行。
CPU寄存器: 每个CPU都包含一系列的寄存器,它们是CPU内内存的基础。CPU在寄存器上执行操作的速度远大于在主存上执行的速度。这是因为CPU访问寄存器的速度远大于主存。
高速缓存cache: 由于计算机的存储设备与处理器的运算速度之间有着几个数量级的差距,所以现代计算机系统都不得不加入一层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲:将运算需要使用到的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无须等待缓慢的内存读写了。CPU访问缓存层的速度快于访问主存的速度,但通常比访问内部寄存器的速度还要慢一点。每个CPU可能有一个CPU缓存层,一些CPU还有多层缓存。在某一时刻,一个或者多个缓存行(cache lines)可能被读到缓存,一个或者多个缓存行可能再被刷新回主存。
内存: 一个计算机还包含一个主存。所有的CPU都可以访问主存。主存通常比CPU中的缓存大得多。
运作原理: 通常情况下,当一个CPU需要读取主存时,它会将主存的部分读到CPU缓存中。它甚至可能将缓存中的部分内容读到它的内部寄存器中,然后在寄存器中执行操作。当CPU需要将结果写回到主存中去时,它会将内部寄存器的值刷新到缓存中,然后在某个时间点将值刷新回主存。
线程之间想要数据能共享,则需要通过数据刷新(更新)主内存进行沟通。
2.2 硬件架构导致的问题
-
缓存一致性问题: 在多处理器系统中,每个处理器都有自己的高速缓存,而它们又共享同一主内存(MainMemory)。
基于高速缓存的存储交互很好地解决了处理器与内存的速度矛盾,但是也引入了新的问题:缓存一致性(CacheCoherence)。
当多个处理器的运算任务都涉及同一块主内存区域时,将可能导致各自的缓存数据不一致的情况,
如果真的发生这种情况,那同步回到主内存时以谁的缓存数据为准呢?为了解决一致性的问题,需要各个处理器访问缓存时都遵循一些协议,
在读写时要根据协议来进行操作,这类协议有MSI、MESI(IllinoisProtocol)、MOSI、Synapse、Firefly及DragonProtocol,等等: -
指令重排序问题: 为了使得处理器内部的运算单元能尽量被充分利用,处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,
处理器会在计算之后将乱序执行的结果重组,保证该结果与顺序执行的结果是一致的,但并不保证程序中各个语句计算的先后顺序与输入代码中的顺序一致。
因此,如果存在一个计算任务依赖另一个计算任务的中间结果,那么其顺序性并不能靠代码的先后顺序来保证。
与处理器的乱序执行优化类似,Java虚拟机的即时编译器中也有类似的指令重排序(Instruction Reorder)优化
3 JMM作为沟通桥梁
3.1 JMM的架构
JMM为了解决上面的问题,对cpu的寄存器和高速缓存进行抽象描述,进行管理。JMM中,线程之间的通讯表现为如下图中的方式:
jmm.jpg- 线程之间的共享变量存储在主内存(Main Memory)中
- 每个线程都有一个私有的本地内存(Local Memory),本地内存是JMM的一个抽象概念,并不真实存在,它涵盖了缓存、写缓冲区、寄存器以及其他的硬件和编译器优化。本地内存中存储了该线程以读/写共享变量的拷贝副本。
- Java内存模型中的线程的工作内存(working memory)是cpu的寄存器和高速缓存的抽象描述。JVM的内存结构描述的是内存的划分,与工作内存概念不同
- 主内存就是硬件的内存,而为了获取更好的运行速度,虚拟机及硬件系统可能会让工作内存优先存储于寄存器和高速缓存中。
3.2 JMM下线程通过的过程
如果线程A与线程B之间要通信的话,必须要经历下面2个步骤:
1)线程A把本地内存A中更新过的共享变量刷新到主内存中去。
2)线程B到主内存中去读取线程A之前已更新过的共享变量,获取到最新的值。
而要保证这个过程的数据一致性,JMM定义了一列的操作来完成
- lock(锁定) :作用于主内存的变量,把一个变量标识为一条线程独占状态。
- unlock(解锁) :作用于主内存变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
- read(读取) :作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用
- load(载入) :作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
- use(使用) :作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。
- assign(赋值) :作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
- store(存储) :作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作。
- write(写入) :作用于主内存的变量,它把store操作从工作内存中一个变量的值传送到主内存的变量中。
而以上操作又设置了一些规则
- 如果要把一个变量从主内存中复制到工作内存,就需要按顺寻地执行read和load操作, 如果把变量从工作内存中同步回主内存中,就要按顺序地执行store和write操作。但Java内存模型只要求上述操作必须按顺序执行,而没有保证必须是连续执行。
- 不允许read和load、store和write操作之一单独出现
- 不允许一个线程丢弃它的最近assign的操作,即变量在工作内存中改变了之后必须同步到主内存中。
- 不允许一个线程无原因地(没有发生过任何assign操作)把数据从工作内存同步回主内存中。
- 一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量。即就是对一个变量实施use和store操作之前,必须先执行过了assign和load操作。
- 一个变量在同一时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。lock和unlock必须成对出现
- 如果对一个变量执行lock操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量前需要重新执行load或assign操作初始化变量的值
- 如果一个变量事先没有被lock操作锁定,则不允许对它执行unlock操作;也不允许去unlock一个被其他线程锁定的变量。
- 对一个变量执行unlock操作之前,必须先把此变量同步到主内存中(执行store和write操作)。
3.3 JMM解决的问题
-
多线程读同步与可见性
-
多线程写同步与原子性
参考链接
网友评论