美文网首页Python
Python中LSTM回归神经网络的时间序列预测

Python中LSTM回归神经网络的时间序列预测

作者: 代码的路 | 来源:发表于2022-08-03 09:48 被阅读0次

    原文链接

    这个问题是国际航空乘客预测问题, 数据是1949年1月到1960年12月国际航空公司每个月的乘客数量(单位:千人),共有12年144个月的数据。

    简书不允许放网盘链接,数据下载见原文

    数据趋势:

    训练程序:

    import numpy as np 
    import pandas as pd 
    import matplotlib.pyplot as plt 
    import torch 
    from torch import nn
    from torch.autograd import Variable
    
    
    #LSTM(Long Short-Term Memory)是长短期记忆网络
    data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
    #pandas.read_csv可以读取CSV(逗号分割)文件、文本类型的文件text、log类型到DataFrame
    #原有两列,时间和乘客数量,usecols=1:只取了乘客数量一列
    
    plt.plot(data_csv)
    plt.show()
    #数据预处理
    data_csv = data_csv.dropna() #去掉na数据
    dataset = data_csv.values      #字典(Dictionary) values():返回字典中的所有值。
    dataset = dataset.astype('float32')   #astype(type):实现变量类型转换  
    max_value = np.max(dataset)
    min_value = np.min(dataset)
    scalar = max_value-min_value
    dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间
    #lambda:定义一个匿名函数,区别于def
    #map(f(x),Itera):map()接收函数f和一个list,把函数f依次作用在list的每个元素上,得到一个新的object并返回
    
    
    
    '''
    接着我们进行数据集的创建,我们想通过前面几个月的流量来预测当月的流量,
    比如我们希望通过前两个月的流量来预测当月的流量,我们可以将前两个月的流量
    当做输入,当月的流量当做输出。同时我们需要将我们的数据集分为训练集和测试
    集,通过测试集的效果来测试模型的性能,这里我们简单的将前面几年的数据作为
    训练集,后面两年的数据作为测试集。
    '''
    def create_dataset(dataset,look_back=2):#look_back 以前的时间步数用作输入变量来预测下一个时间段
        dataX, dataY=[], []
        for i in range(len(dataset) - look_back):
            a = dataset[i:(i+look_back)]  #i和i+1赋值
            dataX.append(a)
            dataY.append(dataset[i+look_back])  #i+2赋值
        return np.array(dataX), np.array(dataY)  #np.array构建数组
    
    data_X, data_Y = create_dataset(dataset)
    #data_X: 2*142     data_Y: 1*142
    
    #划分训练集和测试集,70%作为训练集
    train_size = int(len(data_X) * 0.7)
    test_size = len(data_X)-train_size
     
    train_X = data_X[:train_size]
    train_Y = data_Y[:train_size]
     
    test_X = data_X[train_size:]
    test_Y = data_Y[train_size:]
     
    train_X = train_X.reshape(-1,1,2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
    train_Y = train_Y.reshape(-1,1,1) #输出为1列,每列1个子元素
    test_X = test_X.reshape(-1,1,2)
     
     
    train_x = torch.from_numpy(train_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
    train_y = torch.from_numpy(train_Y)
    test_x = torch.from_numpy(test_X)
    
    
    #定义模型 输入维度input_size是2,因为使用2个月的流量作为输入,隐藏层维度hidden_size可任意指定,这里为4
    class lstm_reg(nn.Module):
        def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
            super(lstm_reg,self).__init__()
            #super() 函数是用于调用父类(超类)的一个方法,直接用类名调用父类
            self.rnn = nn.LSTM(input_size,hidden_size,num_layers) #LSTM 网络
            self.reg = nn.Linear(hidden_size,output_size) #Linear 函数继承于nn.Module
        def forward(self,x):   #定义model类的forward函数
            x, _ = self.rnn(x)
            s,b,h = x.shape   #矩阵从外到里的维数
                       #view()函数的功能和reshape类似,用来转换size大小
            x = x.view(s*b, h) #输出变为(s*b)*h的二维
            x = self.reg(x)
            x = x.view(s,b,-1) #卷积的输出从外到里的维数为s,b,一列
            return x
    
    net = lstm_reg(2,4) #input_size=2,hidden_size=4
     
    criterion = nn.MSELoss()  #损失函数均方差
    optimizer = torch.optim.Adam(net.parameters(),lr=1e-2)
    #构造一个优化器对象 Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数
    #Adam 算法:params (iterable):可用于迭代优化的参数或者定义参数组的 dicts   lr:学习率
    
    
    for e in range(10000):
        var_x = Variable(train_x) #转为Variable(变量)
        var_y = Variable(train_y)
     
        out = net(var_x)
        loss = criterion(out, var_y)
     
        optimizer.zero_grad() #把梯度置零,也就是把loss关于weight的导数变成0.
        loss.backward()  #计算得到loss后就要回传损失,这是在训练的时候才会有的操作,测试时候只有forward过程
        optimizer.step() #回传损失过程中会计算梯度,然后optimizer.step()根据这些梯度更新参数
        if (e+1)%100 == 0:
            print('Epoch: {}, Loss:{:.5f}'.format(e+1, loss.data[0]))
            
    torch.save(net.state_dict(), 'net_params.pkl') #保存训练文件net_params.pkl
    #state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系
    

    测试程序:

    import numpy as np 
    import pandas as pd 
    import matplotlib.pyplot as plt 
    import torch 
    from torch import nn
    from torch.autograd import Variable
     
     
     
    data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
     
    # plt.plot(data_csv)
    # plt.show()
    #数据预处理
    
    data_csv = data_csv.dropna() #去掉na数据
    dataset = data_csv.values #字典(Dictionary) values():返回字典中的所有值。
    dataset = dataset.astype('float32') # astype(type):实现变量类型转换  
    max_value = np.max(dataset)
    min_value = np.min(dataset)
    scalar = max_value-min_value
    dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间
    
    def create_dataset(dataset,look_back=2):
        dataX, dataY=[], []
        for i in range(len(dataset)-look_back):
            a=dataset[i:(i+look_back)]
            dataX.append(a)
            dataY.append(dataset[i+look_back])
        return np.array(dataX), np.array(dataY)
     
    data_X, data_Y = create_dataset(dataset)
    
    
    class lstm_reg(nn.Module):
        def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
            super(lstm_reg,self).__init__()
     
            self.rnn = nn.LSTM(input_size,hidden_size,num_layers)
            self.reg = nn.Linear(hidden_size,output_size)
     
        def forward(self,x):
            x, _ = self.rnn(x)
            s,b,h = x.shape
            x = x.view(s*b, h)
            x = self.reg(x)
            x = x.view(s,b,-1)
            return x
     
     
    net = lstm_reg(2,4)
    
    net.load_state_dict(torch.load('net_params.pkl')) 
    
    data_X = data_X.reshape(-1, 1, 2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
    data_X = torch.from_numpy(data_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
    var_data = Variable(data_X) #转为Variable(变量)
    pred_test = net(var_data)  #产生预测结果
    pred_test = pred_test.view(-1).data.numpy() #view(-1)输出为一行
    
    plt.plot(pred_test, 'r', label='prediction')
    plt.plot(dataset, 'b', label='real')
    plt.legend(loc='best') #loc显示图像  'best'表示自适应方式
    plt.show()
    

    预测结果:

    学习更多编程知识,请关注我的公众号:

    代码的路

    相关文章

      网友评论

        本文标题:Python中LSTM回归神经网络的时间序列预测

        本文链接:https://www.haomeiwen.com/subject/gerywrtx.html