美文网首页语言python开发python3学习
python精简笔记(五)——函数式编程

python精简笔记(五)——函数式编程

作者: 于连林520wcf | 来源:发表于2017-09-21 09:48 被阅读79次

    函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

    函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

    Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。

    返回函数

    函数可以把函数作为返回值返回,如果不需要立刻求和,而是在后面的代码中,以不返回求和的结果,而是返回求和的函数:

    def lazy_sum(*args):
        def sum():
            ax = 0
            for n in args:
                ax = ax + n
            return ax
        return sum
    

    调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

    >>> f = lazy_sum(1, 3, 5, 7, 9)
    >>> f
    <function lazy_sum.<locals>.sum at 0x101c6ed90>
    

    调用函数f时,才真正计算求和的结果:

    >>> f()
    25
    

    上面这种形式称为闭包。

    调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:

    >>> f1 = lazy_sum(1, 3, 5, 7, 9)
    >>> f2 = lazy_sum(1, 3, 5, 7, 9)
    >>> f1==f2
    False
    

    f1()f2()的调用结果互不影响。

    闭包

    返回的函数在其定义内部引用了局部变量 args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用。

    闭包用起来简单,实现起来可不容易。

    错误示范

    
    def count():
    fs = []
    for i in range(1, 4):
    def f():
    return i*i
    fs.append(f)
    return fs
    
    f1, f2, f3 = count()
    
    

    你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果是:

    >>> f1()
    9
    >>> f2()
    9
    >>> f3()
    9
    

    全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。

    返回闭包时牢记的一点就是:返回函数不要引用任何循环变量,或者后续会发生变化的变量。

    如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:

    def count():
        def f(j):
            def g():
                return j*j
            return g
        fs = []
        for i in range(1, 4):
            fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
        return fs
    

    匿名函数 lambda

    传入函数时,有些时候,直接传入匿名函数更方便。

    匿名函数lambda x: x * x实际上就是:

    def f(x):
      return x * x
    
    

    关键字lambda表示匿名函数,冒号前面的x表示函数参数。

    匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。

    用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:

    >>> f = lambda x: x * x
    >>> f
    <function <lambda> at 0x101c6ef28>
    >>> f(5)
    25
    

    同样,也可以把匿名函数作为返回值返回,比如:

    def build(x, y):
      return lambda: x * x + y * y
    

    装饰器

    函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

    >>> def now():
    ... print('2015-3-25')
    ...
    >>> f = now
    >>> f()
    2015-3-25
    

    函数对象有一个__name__属性,可以拿到函数的名字:

    >>> now.__name__
    'now'
    >>> f.__name__
    'now'
    

    假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

    Decorator就是一个返回函数的高阶函数。可以定义如下:

    def log(func):
        def wrapper(*args, **kw):
            print('call %s():' % func.__name__)
            return func(*args, **kw)
        return wrapper
    
    

    观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

    @log
    def now():
        print('2015-3-25')
    

    调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

    >>> now()
    call now():
    2015-3-25
    

    @log放到now()函数的定义处,相当于执行了语句:

    now = log(now)
    

    如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

    def log(text):
        def decorator(func):
            def wrapper(*args, **kw):
                print('%s %s():' % (text, func.__name__))
                return func(*args, **kw)
            return wrapper
        return decorator
    

    这个3层嵌套的decorator用法如下:

    @log('execute')
    def now():
        print('2015-3-25')
    

    相当于

    now = log('execute')(now)
    

    装饰器会改变 函数__name__属性
    Python内置的functools.wraps 可以解决这个问题,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。

    import functools
    
    def log(text):
        def decorator(func):
            @functools.wraps(func)
            def wrapper(*args, **kw):
                print('%s %s():' % (text, func.__name__))
                return func(*args, **kw)
            return wrapper
        return decorator
    

    偏函数

    当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

    例如
    int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换,如果传入base参数,就可以做N进制的转换:

    >>> int('12345', base=8)
    5349
    >>> int('12345', 16)
    74565
    
    

    要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦
    简化代码

    >>> import functools
    >>> int2 = functools.partial(int, base=2)
    >>> int2('1000000')
    64
    >>> int2('1010101')
    85
    

    创建偏函数时,实际上可以接收函数对象、*args**kw这3个参数

    int2 = functools.partial(int, base=2)
    int2('10010')
    

    相当于

    kw = { 'base': 2 }
    int('10010', **kw)
    

    当传入:

    max2 = functools.partial(max, 10)
    

    实际上会把10作为*args的一部分自动加到左边,也就是:

    max2(5, 6, 7)
    

    相当于:

    args = (10, 5, 6, 7)
    max(*args)
    

    相关文章

      网友评论

      • 孙_小星:请问您是黑马的于连林吗? 我没记错吧.现在还在黑马吗?
        于连林520wcf:@孙_小星 是的 来天津就离开黑马了

      本文标题:python精简笔记(五)——函数式编程

      本文链接:https://www.haomeiwen.com/subject/ggxzsxtx.html