美文网首页
Array篇easy难度之不等式多项式变换

Array篇easy难度之不等式多项式变换

作者: 茉莉清可乐对奶茶i | 来源:发表于2020-10-30 14:47 被阅读0次

    题目描述

    https://leetcode.com/problems/count-good-triplets/submissions/

    Given an array of integers arr, and three integers a, b and c. You need to find the number of good triplets.
    A triplet (arr[i], arr[j], arr[k]) is good if the following conditions are true:
    0 <= i < j < k < arr.length
    |arr[i] - arr[j]| <= a
    |arr[j] - arr[k]| <= b
    |arr[i] - arr[k]| <= c
    Where |x| denotes the absolute value of x.
    Return the number of good triplets.
    
    Example 1:
    
    Input: arr = [3,0,1,1,9,7], a = 7, b = 2, c = 3
    Output: 4
    Explanation: There are 4 good triplets: [(3,0,1), (3,0,1), (3,1,1), (0,1,1)].
    Example 2:
    
    Input: arr = [1,1,2,2,3], a = 0, b = 0, c = 1
    Output: 0
    Explanation: No triplet satisfies all conditions.
     
    
    Constraints:
    
    3 <= arr.length <= 100
    0 <= arr[i] <= 1000
    0 <= a, b, c <= 1000
    
    

    博主提交的代码

    时间复杂度(O^3),空间复杂度O(1)

    class Solution {
        public int countGoodTriplets(int[] arr, int a, int b, int c) {
            int result = 0;
            for( int i = 0; i < arr.length; i++){
                for(int j = i+1; j < arr.length; j++){
                    for(int k = j + 1; k < arr.length; k++){
                        if(
                            (abs(arr[i] - arr[j]) <= a) && 
                            (abs(arr[j] - arr[k]) <= b) &&
                            (abs(arr[i] - arr[k]) <= c)
                        ){
                            result++;
                        }
                    }
                }
            }
            return result;
        }
        public int abs(int input){
            if(input < 0){
                return -input;
            }else{
                return input;
            }
        }
    }
    

    他人的解法

    python实现 O(n^2),但是空间复杂度O(n)

    这段代码的原理是根据题干里面的不等式
    |arr[i] - arr[j]| <= a (不等式1)
    |arr[j] - arr[k]| <= b (不等式2)
    |arr[i] - arr[k]| <= c (不等式3)
    第一个循环是直观基于不等式1的,对于第二个循环
    对于不等式2,把绝对值符号拆开后,对于arr[j] - arr[k]大于0和小于0 的分为两个不等式
    |arr[j] - arr[k]| <= b 等价于
    arr[j] - arr[k] <= b (arr[i] - arr[j] >0)
    arr[k] - arr[j] <= b (arr[j] - arr[i] <=0)
    然后将打开绝对值的不等式变化后
    arr[k] >= arr[j] - b (arr[i] - arr[j] >0)
    arr[k] <= arr[j] + b (arr[j] - arr[i] <=0)
    同理,将不等式3变化后,将得到下面的不等式
    arr[k] >= arr[i] - c (arr[i] - arr[k] > 0)
    arr[k] <= arr[i] + c (arr[i] - arr[k] <= 0)
    那么会有人问,为什么我们对于不等式2和3要这么变化,其实原因是我们在第一个循环之后,只能知道arr[i] ,a,b,c这几个值,所以要将他们提前存储好,用于后续的逻辑判断

    def countGoodTriplets(self, arr: List[int], a: int, b: int, c: int) -> int:
        count = 0
        length = len(arr)
        potential = []
        # double for loops is O(n^2) in the worst case; n = len(arr)
        for i in range(length):
            for j in range(i+1, length):
                if abs(arr[i] - arr[j]) <= a:
                    # storing the j index to iterate on (j < k), and the bounds to compare
                    # from our absolute values + inequalities since we have to ensure
                    # that k is within range 
                    # ex. | a[j] - a[k] | <= b  ---> -b <= arr[j] - arr[k] <= b
                    potential.append([j, b + arr[j], - b + arr[j], c + arr[i], - c + arr[i]])
        
        # O(n^2) since p is at most length n and we're iterating on k
        for p in potential:
            for k in range(p[0]+1, length):
                if p[1]>=arr[k]>=p[2] and p[3]>=arr[k]>=p[4]:
                    count += 1
        return count
    

    java复刻

    不过在leetcode上运行了过后,运行速度变慢了,看来空间也没有换到多少时间

    class Solution {
        public int countGoodTriplets(int[] arr, int a, int b, int c) {
            int result = 0;
            List<Map<String,Integer>> cache = new ArrayList<>();
            for( int i = 0; i < arr.length; i++){
                for( int j = i+ 1; j < arr.length; j ++){
                    if( abs( arr[i] - arr[j]) <= a){
                        Map<String, Integer> eachCache = new HashMap<String,Integer>(); 
                        eachCache.put("j-b", arr[j] - b);
                        eachCache.put("j+b", arr[j] + b);
                        eachCache.put("i-c", arr[i] - c);
                        eachCache.put("i+c", arr[i] + c);
                        eachCache.put("j", j);
                        cache.add(eachCache);
                    }
                }
            }
            for(Map<String, Integer> eachCache: cache){
                int v1 = eachCache.get("j-b");
                int v2 = eachCache.get("j+b");
                int v3 = eachCache.get("i-c");
                int v4 = eachCache.get("i+c");
                int j = eachCache.get("j");
                for(int k = j + 1; k < arr.length; k++){
                    if( arr[k] >= v1 && arr[k] <= v2 && arr[k] >= v3 && arr[k] <= v4){
                        result++;
                    }
                }
                
            }
                
            return result;
        }
        public int abs(int input){
            if(input < 0){
                return -input;
            }else{
                return input;
            }
        }
        
    }
    

    相关文章

      网友评论

          本文标题:Array篇easy难度之不等式多项式变换

          本文链接:https://www.haomeiwen.com/subject/gkarvktx.html