美文网首页
2019-01-03

2019-01-03

作者: 无邪酱酱 | 来源:发表于2019-01-03 23:23 被阅读0次

    题目:十折交叉验证SVM算法,计算精确度、召回率、特异性

    代码:

    import numpy as np

    import scipy.io as sio

    from sklearn.model_selection import

    train_test_split# 分割数据模块

    from sklearn import svm

    #导入数据集

    data=sio.loadmat('C:/Users/Desktop/data/AD')#导入数据的路径

    X=data['PET']#数据

    y=data['gnd']#标签

    #X.shape, y.shape

    #分割数据

    X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.1, random_state=0)

    #print(X_train.shape, y_train.shape)

    #print(X_test.shape, y_test.shape)

    #建立模型,训练模型

    #clf = svm.SVC(kernel='linear',C=1).fit(X_train, y_train)

    #clf.score(X_test, y_test)     

    from sklearn.model_selection import

    cross_val_score## K折交叉验证模块

    from sklearn.model_selection importcross_val_predict

    clf = svm.SVC(kernel='linear', C=1)

    scores = cross_val_score(clf, X, y, cv=10)#cv=10,十折

    print('十折的交叉验证得分:',scores)

    print('平均得分:',scores.mean())

    predicted = cross_val_predict(clf,X, y,cv=10)

    '''

    #scores1与scores的结果相同,都可以用来计算精准度。

    print('标准差:',scores.std())

    print("Accuracy: %0.2f (+/-%0.2f)" % (scores.mean(), scores.std() * 2))

    #print('predicted:',predicted)#预测的值

    scores1 = cross_val_score(clf, X, y, cv=10,scoring='accuracy')

    print(scores1.mean())

    '''

    #计算特征

    a,b,p1,t1,t2=0,0,0,0,0

    for i in range(102):

       if y[i]==1&predicted[i]==1:a=a+1

       if y[i]==2&predicted[i]==2:b=b+1

       if predicted[i]==1:p1=p1+1

       if y[i]==1:t1=t1+1

       if y[i]==2:t2=t2+1

    print('真阳性a:{},真阴性b:{},所有预测为阳性数量p1:{},所有实际为阳性数量t1:{},t2:{}'.format(a,b,p1,t1,t2))

    print('精确度:',a/p1)

    print('召回率:',a/t1)#灵敏度

    print('特异性:',b/t2)

    结果:

    十折的交叉验证得分: [0.91666667  0.90909091  0.9 0.8  0.9  1. 0.9 0.8  0.9        0.9 ]

    平均得分:0.8925757575757576

    真阳性a:45,真阴性b:46,所有预测为阳性数量p1:50,所有实际为阳性数量t1:51,t2:51

    精确度:0.9

    召回率:0.8823529411764706

    特异性:0.9019607843137255

    链接:https://pan.baidu.com/s/1J-X1w9WQSSMWMn9mYw1PvA

    提取码:hxoe

    相关文章

      网友评论

          本文标题:2019-01-03

          本文链接:https://www.haomeiwen.com/subject/gkdcrqtx.html