美文网首页
iOS类的加载原理(上)

iOS类的加载原理(上)

作者: 似水流年_9ebe | 来源:发表于2021-07-14 23:06 被阅读0次

    前言

    iOS-dyld加载分析一文中我们介绍了dyld加载分析,那么我们的类是如何被加载进来的,它的原理又是什么呢?我们带着这些疑问开始我们的探索之旅。

    _objc_init分析

    为什么从_objc_init分析iOS-dyld加载分析一文中有介绍,这里不做解释了,我们先贴下这个函数的代码,如下图:

    1

    environ_init();就是环境变量的初始化,方便我们调试程序。

    2
    这些相关变量我们可以在xcode中的Arguments中的Environment Variables中配置,这里不再进行一一展开说明。
    tls_init(); 关于线程key的绑定 - ⽐如每线程数据的析构函数。
    static_init();运⾏C ++静态构造函数。在dyld调⽤我们的静态构造函数之前,libobjc 会调⽤ _objc_init(),因此我们必须⾃⼰做
    如下图:
    3

    runtime_init(); 如图

    4
    运行时环境初如化,里面主要是unAttachedCategoriesallocatedClasses 后面会分析。
    exception_init();初始化libobjc的异常处理系统。
    catche_init()缓存条件初始化。
    _dyld_objc_notify_register(&map_images, load_images, unmap_image);是重点分析对象,这里会调用map_images,那么map_imges到底做了什么?我们将进行着重分析。

    map_images分析

    ** _dyld_objc_notify_register这个函数的调用,会先进入 map_images load_images这两个函数中, map_images是引用类型,也就是指针传递, map_images会跟着内部的变化而变化(不断的循环和递归),而load_images(主要就是调用load方法)是指针拷贝。
    我们看下
    map_images**函数的代码,如图:

    4

    我们再看下map_images_nolock函数的代码,如下:

    void 
    map_images_nolock(unsigned mhCount, const char * const mhPaths[],
                      const struct mach_header * const mhdrs[])
    {
        static bool firstTime = YES;
        header_info *hList[mhCount];
        uint32_t hCount;
        size_t selrefCount = 0;
    
        // Perform first-time initialization if necessary.
        // This function is called before ordinary library initializers. 
        // fixme defer initialization until an objc-using image is found?
        if (firstTime) {
            preopt_init();
        }
    
        if (PrintImages) {
            _objc_inform("IMAGES: processing %u newly-mapped images...\n", mhCount);
        }
    
    
        // Find all images with Objective-C metadata.
        hCount = 0;
    
        // Count classes. Size various table based on the total.
        int totalClasses = 0;
        int unoptimizedTotalClasses = 0;
        {
            uint32_t i = mhCount;
            while (i--) {
                const headerType *mhdr = (const headerType *)mhdrs[I];
    
                auto hi = addHeader(mhdr, mhPaths[i], totalClasses, unoptimizedTotalClasses);
                if (!hi) {
                    // no objc data in this entry
                    continue;
                }
                
                if (mhdr->filetype == MH_EXECUTE) {
                    // Size some data structures based on main executable's size
    #if __OBJC2__
                    // If dyld3 optimized the main executable, then there shouldn't
                    // be any selrefs needed in the dynamic map so we can just init
                    // to a 0 sized map
                    if ( !hi->hasPreoptimizedSelectors() ) {
                      size_t count;
                      _getObjc2SelectorRefs(hi, &count);
                      selrefCount += count;
                      _getObjc2MessageRefs(hi, &count);
                      selrefCount += count;
                    }
    #else
                    _getObjcSelectorRefs(hi, &selrefCount);
    #endif
                    
    #if SUPPORT_GC_COMPAT
                    // Halt if this is a GC app.
                    if (shouldRejectGCApp(hi)) {
                        _objc_fatal_with_reason
                            (OBJC_EXIT_REASON_GC_NOT_SUPPORTED, 
                             OS_REASON_FLAG_CONSISTENT_FAILURE, 
                             "Objective-C garbage collection " 
                             "is no longer supported.");
                    }
    #endif
                }
                
                hList[hCount++] = hi;
                
                if (PrintImages) {
                    _objc_inform("IMAGES: loading image for %s%s%s%s%s\n", 
                                 hi->fname(),
                                 mhdr->filetype == MH_BUNDLE ? " (bundle)" : "",
                                 hi->info()->isReplacement() ? " (replacement)" : "",
                                 hi->info()->hasCategoryClassProperties() ? " (has class properties)" : "",
                                 hi->info()->optimizedByDyld()?" (preoptimized)":"");
                }
            }
        }
    
        // Perform one-time runtime initialization that must be deferred until 
        // the executable itself is found. This needs to be done before 
        // further initialization.
        // (The executable may not be present in this infoList if the 
        // executable does not contain Objective-C code but Objective-C 
        // is dynamically loaded later.
        if (firstTime) {
            sel_init(selrefCount);
            arr_init();
    
    #if SUPPORT_GC_COMPAT
            // Reject any GC images linked to the main executable.
            // We already rejected the app itself above.
            // Images loaded after launch will be rejected by dyld.
    
            for (uint32_t i = 0; i < hCount; i++) {
                auto hi = hList[I];
                auto mh = hi->mhdr();
                if (mh->filetype != MH_EXECUTE  &&  shouldRejectGCImage(mh)) {
                    _objc_fatal_with_reason
                        (OBJC_EXIT_REASON_GC_NOT_SUPPORTED, 
                         OS_REASON_FLAG_CONSISTENT_FAILURE, 
                         "%s requires Objective-C garbage collection "
                         "which is no longer supported.", hi->fname());
                }
            }
    #endif
    
    #if TARGET_OS_OSX
            // Disable +initialize fork safety if the app is too old (< 10.13).
            // Disable +initialize fork safety if the app has a
            //   __DATA,__objc_fork_ok section.
    
    //        if (!dyld_program_sdk_at_least(dyld_platform_version_macOS_10_13)) {
    //            DisableInitializeForkSafety = true;
    //            if (PrintInitializing) {
    //                _objc_inform("INITIALIZE: disabling +initialize fork "
    //                             "safety enforcement because the app is "
    //                             "too old.)");
    //            }
    //        }
    
            for (uint32_t i = 0; i < hCount; i++) {
                auto hi = hList[I];
                auto mh = hi->mhdr();
                if (mh->filetype != MH_EXECUTE) continue;
                unsigned long size;
                if (getsectiondata(hi->mhdr(), "__DATA", "__objc_fork_ok", &size)) {
                    DisableInitializeForkSafety = true;
                    if (PrintInitializing) {
                        _objc_inform("INITIALIZE: disabling +initialize fork "
                                     "safety enforcement because the app has "
                                     "a __DATA,__objc_fork_ok section");
                    }
                }
                break;  // assume only one MH_EXECUTE image
            }
    #endif
    
        }
    
        if (hCount > 0) {
            _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
        }
    
        firstTime = NO;
        
        // Call image load funcs after everything is set up.
        for (auto func : loadImageFuncs) {
            for (uint32_t i = 0; i < mhCount; i++) {
                func(mhdrs[I]);
            }
        }
    }
    

    ** _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);**就是读取我们的镜像文件。
    我们再看下它的代码:

    /***********************************************************************
    * _read_images
    * Perform initial processing of the headers in the linked 
    * list beginning with headerList. 
    *
    * Called by: map_images_nolock
    *
    * Locking: runtimeLock acquired by map_images
    **********************************************************************/
    void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
    {
        header_info *hi;
        uint32_t hIndex;
        size_t count;
        size_t I;
        Class *resolvedFutureClasses = nil;
        size_t resolvedFutureClassCount = 0;
        static bool doneOnce;
        bool launchTime = NO;
        TimeLogger ts(PrintImageTimes);
    
        runtimeLock.assertLocked();
    
    #define EACH_HEADER \
        hIndex = 0;         \
        hIndex < hCount && (hi = hList[hIndex]); \
        hIndex++
    
        if (!doneOnce) {
            doneOnce = YES;
            launchTime = YES;
    
    #if SUPPORT_NONPOINTER_ISA
            // Disable non-pointer isa under some conditions.
    
    # if SUPPORT_INDEXED_ISA
            // Disable nonpointer isa if any image contains old Swift code
            for (EACH_HEADER) {
                if (hi->info()->containsSwift()  &&
                    hi->info()->swiftUnstableVersion() < objc_image_info::SwiftVersion3)
                {
                    DisableNonpointerIsa = true;
                    if (PrintRawIsa) {
                        _objc_inform("RAW ISA: disabling non-pointer isa because "
                                     "the app or a framework contains Swift code "
                                     "older than Swift 3.0");
                    }
                    break;
                }
            }
    # endif
    
    # if TARGET_OS_OSX
            // Disable non-pointer isa if the app is too old
            // (linked before OS X 10.11)
    //        if (!dyld_program_sdk_at_least(dyld_platform_version_macOS_10_11)) {
    //            DisableNonpointerIsa = true;
    //            if (PrintRawIsa) {
    //                _objc_inform("RAW ISA: disabling non-pointer isa because "
    //                             "the app is too old.");
    //            }
    //        }
    
            // Disable non-pointer isa if the app has a __DATA,__objc_rawisa section
            // New apps that load old extensions may need this.
            for (EACH_HEADER) {
                if (hi->mhdr()->filetype != MH_EXECUTE) continue;
                unsigned long size;
                if (getsectiondata(hi->mhdr(), "__DATA", "__objc_rawisa", &size)) {
                    DisableNonpointerIsa = true;
                    if (PrintRawIsa) {
                        _objc_inform("RAW ISA: disabling non-pointer isa because "
                                     "the app has a __DATA,__objc_rawisa section");
                    }
                }
                break;  // assume only one MH_EXECUTE image
            }
    # endif
    
    #endif
    
            if (DisableTaggedPointers) {
                disableTaggedPointers();
            }
            
            initializeTaggedPointerObfuscator();
    
            if (PrintConnecting) {
                _objc_inform("CLASS: found %d classes during launch", totalClasses);
            }
    
            // namedClasses
            // Preoptimized classes don't go in this table.
            // 4/3 is NXMapTable's load factor
            int namedClassesSize = 
                (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
            gdb_objc_realized_classes =
                NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
    
            ts.log("IMAGE TIMES: first time tasks");
        }
    
        // Fix up @selector references
        static size_t UnfixedSelectors;
        {
            mutex_locker_t lock(selLock);
            for (EACH_HEADER) {
                if (hi->hasPreoptimizedSelectors()) continue;
    
                bool isBundle = hi->isBundle();
                SEL *sels = _getObjc2SelectorRefs(hi, &count);
                UnfixedSelectors += count;
                for (i = 0; i < count; i++) {
                    const char *name = sel_cname(sels[i]);
                    SEL sel = sel_registerNameNoLock(name, isBundle);
                    if (sels[i] != sel) {
                        sels[i] = sel;
                    }
                }
            }
        }
    
        ts.log("IMAGE TIMES: fix up selector references");
    
        // Discover classes. Fix up unresolved future classes. Mark bundle classes.
        bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
    
        for (EACH_HEADER) {
            if (! mustReadClasses(hi, hasDyldRoots)) {
                // Image is sufficiently optimized that we need not call readClass()
                continue;
            }
    
            classref_t const *classlist = _getObjc2ClassList(hi, &count);
    
            bool headerIsBundle = hi->isBundle();
            bool headerIsPreoptimized = hi->hasPreoptimizedClasses();
    
            for (i = 0; i < count; i++) {
                Class cls = (Class)classlist[I];
                Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
    
                if (newCls != cls  &&  newCls) {
                    // Class was moved but not deleted. Currently this occurs 
                    // only when the new class resolved a future class.
                    // Non-lazily realize the class below.
                    resolvedFutureClasses = (Class *)
                        realloc(resolvedFutureClasses, 
                                (resolvedFutureClassCount+1) * sizeof(Class));
                    resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
                }
            }
        }
    
        ts.log("IMAGE TIMES: discover classes");
    
        // Fix up remapped classes
        // Class list and nonlazy class list remain unremapped.
        // Class refs and super refs are remapped for message dispatching.
        
        if (!noClassesRemapped()) {
            for (EACH_HEADER) {
                Class *classrefs = _getObjc2ClassRefs(hi, &count);
                for (i = 0; i < count; i++) {
                    remapClassRef(&classrefs[I]);
                }
                // fixme why doesn't test future1 catch the absence of this?
                classrefs = _getObjc2SuperRefs(hi, &count);
                for (i = 0; i < count; i++) {
                    remapClassRef(&classrefs[I]);
                }
            }
        }
    
        ts.log("IMAGE TIMES: remap classes");
    
    #if SUPPORT_FIXUP
        // Fix up old objc_msgSend_fixup call sites
        for (EACH_HEADER) {
            message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
            if (count == 0) continue;
    
            if (PrintVtables) {
                _objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
                             "call sites in %s", count, hi->fname());
            }
            for (i = 0; i < count; i++) {
                fixupMessageRef(refs+i);
            }
        }
    
        ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
    #endif
    
    
        // Discover protocols. Fix up protocol refs.
        for (EACH_HEADER) {
            extern objc_class OBJC_CLASS_$_Protocol;
            Class cls = (Class)&OBJC_CLASS_$_Protocol;
            ASSERT(cls);
            NXMapTable *protocol_map = protocols();
            bool isPreoptimized = hi->hasPreoptimizedProtocols();
    
            // Skip reading protocols if this is an image from the shared cache
            // and we support roots
            // Note, after launch we do need to walk the protocol as the protocol
            // in the shared cache is marked with isCanonical() and that may not
            // be true if some non-shared cache binary was chosen as the canonical
            // definition
            if (launchTime && isPreoptimized) {
                if (PrintProtocols) {
                    _objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
                                 hi->fname());
                }
                continue;
            }
    
            bool isBundle = hi->isBundle();
    
            protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
            for (i = 0; i < count; i++) {
                readProtocol(protolist[i], cls, protocol_map, 
                             isPreoptimized, isBundle);
            }
        }
    
        ts.log("IMAGE TIMES: discover protocols");
    
        // Fix up @protocol references
        // Preoptimized images may have the right 
        // answer already but we don't know for sure.
        for (EACH_HEADER) {
            // At launch time, we know preoptimized image refs are pointing at the
            // shared cache definition of a protocol.  We can skip the check on
            // launch, but have to visit @protocol refs for shared cache images
            // loaded later.
            if (launchTime && hi->isPreoptimized())
                continue;
            protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
            for (i = 0; i < count; i++) {
                remapProtocolRef(&protolist[I]);
            }
        }
    
        ts.log("IMAGE TIMES: fix up @protocol references");
    
        // Discover categories. Only do this after the initial category
        // attachment has been done. For categories present at startup,
        // discovery is deferred until the first load_images call after
        // the call to _dyld_objc_notify_register completes. rdar://problem/53119145
        if (didInitialAttachCategories) {
            for (EACH_HEADER) {
                load_categories_nolock(hi);
            }
        }
    
        ts.log("IMAGE TIMES: discover categories");
    
        // Category discovery MUST BE Late to avoid potential races
        // when other threads call the new category code before
        // this thread finishes its fixups.
    
        // +load handled by prepare_load_methods()
    
        // Realize non-lazy classes (for +load methods and static instances)
        for (EACH_HEADER) {
            classref_t const *classlist = hi->nlclslist(&count);
            for (i = 0; i < count; i++) {
                Class cls = remapClass(classlist[i]);
                if (!cls) continue;
    
                addClassTableEntry(cls);
    
                if (cls->isSwiftStable()) {
                    if (cls->swiftMetadataInitializer()) {
                        _objc_fatal("Swift class %s with a metadata initializer "
                                    "is not allowed to be non-lazy",
                                    cls->nameForLogging());
                    }
                    // fixme also disallow relocatable classes
                    // We can't disallow all Swift classes because of
                    // classes like Swift.__EmptyArrayStorage
                }
                realizeClassWithoutSwift(cls, nil);
            }
        }
    
        ts.log("IMAGE TIMES: realize non-lazy classes");
    
        // Realize newly-resolved future classes, in case CF manipulates them
        if (resolvedFutureClasses) {
            for (i = 0; i < resolvedFutureClassCount; i++) {
                Class cls = resolvedFutureClasses[I];
                if (cls->isSwiftStable()) {
                    _objc_fatal("Swift class is not allowed to be future");
                }
                realizeClassWithoutSwift(cls, nil);
                cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
            }
            free(resolvedFutureClasses);
        }
    
        ts.log("IMAGE TIMES: realize future classes");
    
        if (DebugNonFragileIvars) {
            realizeAllClasses();
        }
    
    
        // Print preoptimization statistics
        if (PrintPreopt) {
            static unsigned int PreoptTotalMethodLists;
            static unsigned int PreoptOptimizedMethodLists;
            static unsigned int PreoptTotalClasses;
            static unsigned int PreoptOptimizedClasses;
    
            for (EACH_HEADER) {
                if (hi->hasPreoptimizedSelectors()) {
                    _objc_inform("PREOPTIMIZATION: honoring preoptimized selectors "
                                 "in %s", hi->fname());
                }
                else if (hi->info()->optimizedByDyld()) {
                    _objc_inform("PREOPTIMIZATION: IGNORING preoptimized selectors "
                                 "in %s", hi->fname());
                }
    
                classref_t const *classlist = _getObjc2ClassList(hi, &count);
                for (i = 0; i < count; i++) {
                    Class cls = remapClass(classlist[i]);
                    if (!cls) continue;
    
                    PreoptTotalClasses++;
                    if (hi->hasPreoptimizedClasses()) {
                        PreoptOptimizedClasses++;
                    }
                    
                    const method_list_t *mlist;
                    if ((mlist = cls->bits.safe_ro()->baseMethods())) {
                        PreoptTotalMethodLists++;
                        if (mlist->isFixedUp()) {
                            PreoptOptimizedMethodLists++;
                        }
                    }
                    if ((mlist = cls->ISA()->bits.safe_ro()->baseMethods())) {
                        PreoptTotalMethodLists++;
                        if (mlist->isFixedUp()) {
                            PreoptOptimizedMethodLists++;
                        }
                    }
                }
            }
    
            _objc_inform("PREOPTIMIZATION: %zu selector references not "
                         "pre-optimized", UnfixedSelectors);
            _objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) method lists pre-sorted",
                         PreoptOptimizedMethodLists, PreoptTotalMethodLists, 
                         PreoptTotalMethodLists
                         ? 100.0*PreoptOptimizedMethodLists/PreoptTotalMethodLists 
                         : 0.0);
            _objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) classes pre-registered",
                         PreoptOptimizedClasses, PreoptTotalClasses, 
                         PreoptTotalClasses 
                         ? 100.0*PreoptOptimizedClasses/PreoptTotalClasses
                         : 0.0);
            _objc_inform("PREOPTIMIZATION: %zu protocol references not "
                         "pre-optimized", UnfixedProtocolReferences);
        }
    
    #undef EACH_HEADER
    }
    

    这里的代码过长,我们只分析比较主要的,其它的大家可以自行阅读。
    我们先介绍下read_images大体的流程:
    1.条件控制进⾏⼀次的加载。
    2.修复预编译阶段的@selector的混乱问题。
    3.错误混乱的类处理。
    4.修复重映射一些滑被镜像文件加载进来的类。
    5.修复一些消息!
    6.当我们的类里面有协议的时候:readProtocol。
    8.分类处理。
    9.类的加载处理。
    10.没有被处理的类,优化那些被侵犯的类。

    这里第8,9,10三个是我们要进行着重分析的,因为这些都是有关类的加载。

    initializeTaggedPointerObfuscator();这行代码是对小对象的一些混淆,代码如图:

    4
    objc_debug_taggedpointer_obfuscator &= ~(_OBJC_TAG_EXT_MASK | _OBJC_TAG_NO_OBFUSCATION_MASK);就是编码取值。

    int namedClassesSize =
    (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
    gdb_objc_realized_classes =
    NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);

    这里是创建表,** namedClassesSize是创建表的大小,这个大小为什么是乘4除3?我们接着分析。
    乘4除3是负载因子,
    namedClassesSize是要开启的总容积,假如我们总共要开辟的大小是8, 那么也就是84/3,当我们往里面添加的时候,什么时候扩容呢,也就是x3/4 = 8*4/3,所以x不能超过8。
    上文中我们有介绍过runtime_init()这个里面也在创建表,代码如下:

     objc::unattachedCategories.init(32);
     objc::allocatedClasses.init();
    

    objc::allocatedClasses.init();这个表与** gdb_objc_realized_classes这个表有什么区别呢,我们接着分析,
    ** gdb_objc_realized_classes
    这个表是NXMapTable类型,这个是不管是否实现与否的总表。
    objc::allocatedClasses.init();这个表是已经开辟过的表。

       static size_t UnfixedSelectors;
        {
            mutex_locker_t lock(selLock);
            for (EACH_HEADER) {
                if (hi->hasPreoptimizedSelectors()) continue;
    
                bool isBundle = hi->isBundle();
                SEL *sels = _getObjc2SelectorRefs(hi, &count);
                UnfixedSelectors += count;
                for (i = 0; i < count; i++) {
                    const char *name = sel_cname(sels[i]);
                    SEL sel = sel_registerNameNoLock(name, isBundle);
                    if (sels[i] != sel) {
                        sels[i] = sel;
                    }
                }
            }
        }
    

    这段代码是修复selector的引用。
    下面我们来分析这段代码:

     for (EACH_HEADER) {
            if (! mustReadClasses(hi, hasDyldRoots)) {
                // Image is sufficiently optimized that we need not call readClass()
                continue;
            }
    
            classref_t const *classlist = _getObjc2ClassList(hi, &count);
    
            bool headerIsBundle = hi->isBundle();
            bool headerIsPreoptimized = hi->hasPreoptimizedClasses();
    
            for (i = 0; i < count; i++) {
                Class cls = (Class)classlist[I];
                Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
    
                if (newCls != cls  &&  newCls) {
                    // Class was moved but not deleted. Currently this occurs 
                    // only when the new class resolved a future class.
                    // Non-lazily realize the class below.
                    resolvedFutureClasses = (Class *)
                        realloc(resolvedFutureClasses, 
                                (resolvedFutureClassCount+1) * sizeof(Class));
                    resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
                }
            }
        }
    

    这段代码在执行过程中没有进入resolvedFutureClasses这个方法的调用,这是为什么呢,我们继续往往下分析。
    resolvedFutureClasses这个方法的意思是未来要处理的类,处理没有删除干净的类(会引起混乱)。
    我们重新运行,断点这行代码** Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);,如图所示:

    5
    这里做了类的处理,那么它就是我们要研究的重点,下面我们将对
    readClass**这个函数进行分析。
    我们先贴下这个函数的代码,然后分析:
    /***********************************************************************
    * readClass
    * Read a class and metaclass as written by a compiler.
    * Returns the new class pointer. This could be: 
    * - cls
    * - nil  (cls has a missing weak-linked superclass)
    * - something else (space for this class was reserved by a future class)
    *
    * Note that all work performed by this function is preflighted by 
    * mustReadClasses(). Do not change this function without updating that one.
    *
    * Locking: runtimeLock acquired by map_images or objc_readClassPair
    **********************************************************************/
    Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
    {
        const char *mangledName = cls->nonlazyMangledName();
        
        if (missingWeakSuperclass(cls)) {
            // No superclass (probably weak-linked). 
            // Disavow any knowledge of this subclass.
            if (PrintConnecting) {
                _objc_inform("CLASS: IGNORING class '%s' with "
                             "missing weak-linked superclass", 
                             cls->nameForLogging());
            }
            addRemappedClass(cls, nil);
            cls->setSuperclass(nil);
            return nil;
        }
        
        cls->fixupBackwardDeployingStableSwift();
    
        Class replacing = nil;
        if (mangledName != nullptr) {
            if (Class newCls = popFutureNamedClass(mangledName)) {
                // This name was previously allocated as a future class.
                // Copy objc_class to future class's struct.
                // Preserve future's rw data block.
    
                if (newCls->isAnySwift()) {
                    _objc_fatal("Can't complete future class request for '%s' "
                                "because the real class is too big.",
                                cls->nameForLogging());
                }
    
                class_rw_t *rw = newCls->data();
                const class_ro_t *old_ro = rw->ro();
                memcpy(newCls, cls, sizeof(objc_class));
    
                // Manually set address-discriminated ptrauthed fields
                // so that newCls gets the correct signatures.
                newCls->setSuperclass(cls->getSuperclass());
                newCls->initIsa(cls->getIsa());
    
                rw->set_ro((class_ro_t *)newCls->data());
                newCls->setData(rw);
                freeIfMutable((char *)old_ro->getName());
                free((void *)old_ro);
    
                addRemappedClass(cls, newCls);
    
                replacing = cls;
                cls = newCls;
            }
        }
        
        if (headerIsPreoptimized  &&  !replacing) {
            // class list built in shared cache
            // fixme strict assert doesn't work because of duplicates
            // ASSERT(cls == getClass(name));
            ASSERT(mangledName == nullptr || getClassExceptSomeSwift(mangledName));
        } else {
            if (mangledName) { //some Swift generic classes can lazily generate their names
                addNamedClass(cls, mangledName, replacing);
            } else {
                Class meta = cls->ISA();
                const class_ro_t *metaRO = meta->bits.safe_ro();
                ASSERT(metaRO->getNonMetaclass() && "Metaclass with lazy name must have a pointer to the corresponding nonmetaclass.");
                ASSERT(metaRO->getNonMetaclass() == cls && "Metaclass nonmetaclass pointer must equal the original class.");
            }
            addClassTableEntry(cls);
        }
    
        // for future reference: shared cache never contains MH_BUNDLEs
        if (headerIsBundle) {
            cls->data()->flags |= RO_FROM_BUNDLE;
            cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
        }
        
        return cls;
    }
    

    这段代码是这个函数的核心:

                class_rw_t *rw = newCls->data();
                const class_ro_t *old_ro = rw->ro();
                memcpy(newCls, cls, sizeof(objc_class));
    
                // Manually set address-discriminated ptrauthed fields
                // so that newCls gets the correct signatures.
                newCls->setSuperclass(cls->getSuperclass());
                newCls->initIsa(cls->getIsa());
    
                rw->set_ro((class_ro_t *)newCls->data());
                newCls->setData(rw);
                freeIfMutable((char *)old_ro->getName());
                free((void *)old_ro);
    
                addRemappedClass(cls, newCls);
    

    我们在终端po mangledName是一个"NSStackBlock"字符串,o为了方便,我们先加入:

    printf("%s- RO---%s",__func__, mangledName);
    

    然后重新运行,可以看到有RoPerson的打印。
    我们再加一些判断代码,来判断我们自己的类是怎么加载的,如下:

        const char *RoPersonName = "RoPerson";
        if (strcmp(mangledName, RoPersonName)==0) {
            printf("%s---RO-----%s\n",__func__, mangledName);
        }
    

    然后再重新运行,断点,如图所示:


    5

    发现**if (Class newCls = popFutureNamedClass(mangledName)) **这里根本没进来。
    接着会调这段代码:

     if (mangledName) { //some Swift generic classes can lazily generate their names
                addNamedClass(cls, mangledName, replacing);
            }
    

    加入到哈希map中去。
    addClassTableEntry(cls);这个函数的代码如下:

    static void
    addClassTableEntry(Class cls, bool addMeta = true)
    {
        runtimeLock.assertLocked();
    
        // This class is allowed to be a known class via the shared cache or via
        // data segments, but it is not allowed to be in the dynamic table already.
        auto &set = objc::allocatedClasses.get();
    
        ASSERT(set.find(cls) == set.end());
    
        if (!isKnownClass(cls))
            set.insert(cls);
        if (addMeta)
            addClassTableEntry(cls->ISA(), false);
    }
    

    if (!isKnownClass(cls))
    set.insert(cls);
    如果当前类不存在(未知的)会插入到被当前被加载类中去,同时会判断是否要把元类插入进来。

    realizeClass的分析

    我们为了方便调试,可以在类相关的地方加入以下代码方便我们调试

        const char *mangledName = cls->nonlazyMangledName();
        const char *RoPersonName = "RoPerson";
    
        if (strcmp(mangledName, RoPersonName) == 0) {
            printf("%s -RO: 要研究的: - %s\n",__func__,mangledName);
        }
    

    然后我们在类相关的地方打个断点调试,如图所示代码:

    6

    从上图可以看出mangledName就是RoPerson,断点继续执行,发现走到了** realizeClassWithoutSwift(cls, nil);**这行代码,这行代码就是类的实现,也就是核心重点。
    我们先把这段代码贴出来,如下:

    /***********************************************************************
    * realizeClassWithoutSwift
    * Performs first-time initialization on class cls, 
    * including allocating its read-write data.
    * Does not perform any Swift-side initialization.
    * Returns the real class structure for the class. 
    * Locking: runtimeLock must be write-locked by the caller
    *****************************核心重点*****************************************/
    static Class realizeClassWithoutSwift(Class cls, Class previously)
    {
        runtimeLock.assertLocked();
    
        class_rw_t *rw;
        Class supercls;
        Class metacls;
    
        if (!cls) return nil;
        if (cls->isRealized()) {
            validateAlreadyRealizedClass(cls);
            return cls;
        }
        ASSERT(cls == remapClass(cls));
    
        // fixme verify class is not in an un-dlopened part of the shared cache?
    
        auto ro = (const class_ro_t *)cls->data();
        auto isMeta = ro->flags & RO_META;
        
        
        
        
        if (ro->flags & RO_FUTURE) {
            // This was a future class. rw data is already allocated.
            rw = cls->data();
            ro = cls->data()->ro();
            ASSERT(!isMeta);
            cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
        } else {
            // Normal class. Allocate writeable class data. ro -> rw
            rw = objc::zalloc<class_rw_t>();
            rw->set_ro(ro);
            rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
            cls->setData(rw);
        }
    
        cls->cache.initializeToEmptyOrPreoptimizedInDisguise();
    
    #if FAST_CACHE_META
        if (isMeta) cls->cache.setBit(FAST_CACHE_META);
    #endif
    
        // Choose an index for this class.
        // Sets cls->instancesRequireRawIsa if indexes no more indexes are available
        cls->chooseClassArrayIndex();
    
        if (PrintConnecting) {
            _objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
                         cls->nameForLogging(), isMeta ? " (meta)" : "", 
                         (void*)cls, ro, cls->classArrayIndex(),
                         cls->isSwiftStable() ? "(swift)" : "",
                         cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
        }
    
        // Realize superclass and metaclass, if they aren't already.
        // This needs to be done after RW_REALIZED is set above, for root classes.
        // This needs to be done after class index is chosen, for root metaclasses.
        // This assumes that none of those classes have Swift contents,
        //   or that Swift's initializers have already been called.
        //   fixme that assumption will be wrong if we add support
        //   for ObjC subclasses of Swift classes.
        supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
        metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
    
    #if SUPPORT_NONPOINTER_ISA
        if (isMeta) {
            // Metaclasses do not need any features from non pointer ISA
            // This allows for a faspath for classes in objc_retain/objc_release.
            cls->setInstancesRequireRawIsa();
        } else {
            // Disable non-pointer isa for some classes and/or platforms.
            // Set instancesRequireRawIsa.
            bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
            bool rawIsaIsInherited = false;
            static bool hackedDispatch = false;
    
            if (DisableNonpointerIsa) {
                // Non-pointer isa disabled by environment or app SDK version
                instancesRequireRawIsa = true;
            }
            else if (!hackedDispatch  &&  0 == strcmp(ro->getName(), "OS_object"))
            {
                // hack for libdispatch et al - isa also acts as vtable pointer
                hackedDispatch = true;
                instancesRequireRawIsa = true;
            }
            else if (supercls  &&  supercls->getSuperclass()  &&
                     supercls->instancesRequireRawIsa())
            {
                // This is also propagated by addSubclass()
                // but nonpointer isa setup needs it earlier.
                // Special case: instancesRequireRawIsa does not propagate
                // from root class to root metaclass
                instancesRequireRawIsa = true;
                rawIsaIsInherited = true;
            }
    
            if (instancesRequireRawIsa) {
                cls->setInstancesRequireRawIsaRecursively(rawIsaIsInherited);
            }
        }
    // SUPPORT_NONPOINTER_ISA
    #endif
    
        // Update superclass and metaclass in case of remapping
        cls->setSuperclass(supercls);
        cls->initClassIsa(metacls);
    
        // Reconcile instance variable offsets / layout.
        // This may reallocate class_ro_t, updating our ro variable.
        if (supercls  &&  !isMeta) reconcileInstanceVariables(cls, supercls, ro);
    
        // Set fastInstanceSize if it wasn't set already.
        cls->setInstanceSize(ro->instanceSize);
    
        // Copy some flags from ro to rw
        if (ro->flags & RO_HAS_CXX_STRUCTORS) {
            cls->setHasCxxDtor();
            if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
                cls->setHasCxxCtor();
            }
        }
        
        // Propagate the associated objects forbidden flag from ro or from
        // the superclass.
        if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
            (supercls && supercls->forbidsAssociatedObjects()))
        {
            rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
        }
    
        // Connect this class to its superclass's subclass lists
        if (supercls) {
            addSubclass(supercls, cls);
        } else {
            addRootClass(cls);
        }
        
    
        // Attach categories
        methodizeClass(cls, previously);
    
        return cls;
    }
    

    下面我们就断点调试这个函数,如图所示:


    7

    这里的cls就是RoPerson。
    我们再看下ro这个变量,如图:

    8
    说明ro已经有了数据。
    我们再查看baseMethodList如图所示:
    9
    这里发现baseMethodList没有方法列表,而RoPerson明明是有方法的,这又是为什么呢?
    这是因为这里只是一个基本数据结构,还没有加载进来,我们接着往下分析。
     // Normal class. Allocate writeable class data. ro -> rw
            rw = objc::zalloc<class_rw_t>();
            rw->set_ro(ro);
            rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
            cls->setData(rw);
    

    这段代码的操作是把ro(就是上面data中的数据)复制到rw中去。
    cls->setInstancesRequireRawIsa();这行代码说明了元类的isa地址与类的名字是一样的

     supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
     metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
     cls->setSuperclass(supercls);
     cls->initClassIsa(metacls);
    

    这说明了之前介绍的isa的指向和继承链的关系。
    我们在这个函数再加一些判断代码,再重新断点调试,如图:


    截屏2021-07-17 上午9.51.38.png

    接着我们在methodizeClass这个函数也加入测试代码,如图:

    10
    在这里我们在查看下baseMethodList,如图:
    11
    还是没有方法,这又是为什么呢,方法列表为什么没有,我们接着分析methodizeClass

    methodizeClass分析

    我们在methodizeClass这个函数继续执行,如图所示:

    12
    在这里发现list是有值的,但是打印不出来的。
    我们看下** prepareMethodLists**这个函数的代码,如下:
    static void 
    prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
                       bool baseMethods, bool methodsFromBundle, const char *why)
    {
        runtimeLock.assertLocked();
    
        if (addedCount == 0) return;
    
        // There exist RR/AWZ/Core special cases for some class's base methods.
        // But this code should never need to scan base methods for RR/AWZ/Core:
        // default RR/AWZ/Core cannot be set before setInitialized().
        // Therefore we need not handle any special cases here.
        if (baseMethods) {
            ASSERT(cls->hasCustomAWZ() && cls->hasCustomRR() && cls->hasCustomCore());
        } else if (cls->cache.isConstantOptimizedCache()) {
            cls->setDisallowPreoptCachesRecursively(why);
        } else if (cls->allowsPreoptInlinedSels()) {
    #if CONFIG_USE_PREOPT_CACHES
            SEL *sels = (SEL *)objc_opt_offsets[OBJC_OPT_INLINED_METHODS_START];
            SEL *sels_end = (SEL *)objc_opt_offsets[OBJC_OPT_INLINED_METHODS_END];
            if (method_lists_contains_any(addedLists, addedLists + addedCount, sels, sels_end - sels)) {
                cls->setDisallowPreoptInlinedSelsRecursively(why);
            }
    #endif
        }
    
        // Add method lists to array.
        // Reallocate un-fixed method lists.
        // The new methods are PREPENDED to the method list array.
    
        for (int i = 0; i < addedCount; i++) {
            method_list_t *mlist = addedLists[I];
            ASSERT(mlist);
    
            // Fixup selectors if necessary
            if (!mlist->isFixedUp()) {
                fixupMethodList(mlist, methodsFromBundle, true/*sort*/);
            }
        }
    
        // If the class is initialized, then scan for method implementations
        // tracked by the class's flags. If it's not initialized yet,
        // then objc_class::setInitialized() will take care of it.
        if (cls->isInitialized()) {
            objc::AWZScanner::scanAddedMethodLists(cls, addedLists, addedCount);
            objc::RRScanner::scanAddedMethodLists(cls, addedLists, addedCount);
            objc::CoreScanner::scanAddedMethodLists(cls, addedLists, addedCount);
        }
    }
    

    ** fixupMethodList**再看下这个函数的代码:

    static void 
    fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
    {
        runtimeLock.assertLocked();
        ASSERT(!mlist->isFixedUp());
    
        // fixme lock less in attachMethodLists ?
        // dyld3 may have already uniqued, but not sorted, the list
        if (!mlist->isUniqued()) {
            mutex_locker_t lock(selLock);
        
            // Unique selectors in list.
            for (auto& meth : *mlist) {
                const char *name = sel_cname(meth.name());
                
                // printf("上面 : %s - %p\n",name,meth.name());
                
                meth.setName(sel_registerNameNoLock(name, bundleCopy));
            }
        }
    
        // Sort by selector address.
        // Don't try to sort small lists, as they're immutable.
        // Don't try to sort big lists of nonstandard size, as stable_sort
        // won't copy the entries properly.
        if (sort && !mlist->isSmallList() && mlist->entsize() == method_t::bigSize) {
            method_t::SortBySELAddress sorter;
            std::stable_sort(&mlist->begin()->big(), &mlist->end()->big(), sorter);
        }
       
        // Mark method list as uniqued and sorted.
        // Can't mark small lists, since they're immutable.
        if (!mlist->isSmallList()) {
            mlist->setFixedUp();
        }
    }
    
       const char *name = sel_cname(meth.name());
       meth.setName(sel_registerNameNoLock(name, bundleCopy));
    

    这两行代码拿到sel,再把sel和地址放到meth中去,然后根据地址排序。
    这个时候我们走完这个函数,然后再打印一下ro,如图:

    12
    发现baseMethodList依然没有数据,我们明明把它加进来了,这是为什么?我们接着分析。

    懒加载类与非懒加载类

    在这个函数methodizeClassprepareMethodLists执行完后,直接跳过了if (rwe) rwe->methods.attachLists(&list, 1);这行代码,那么rwe是什么时候赋值的, 我们后面再分析。
    我们回过头看下_read_images这个函数的这几行代码,如下:

    // Realize non-lazy classes (for +load methods and static instances)
        for (EACH_HEADER) {
            classref_t const *classlist = hi->nlclslist(&count);
            for (i = 0; i < count; i++) {
                Class cls = remapClass(classlist[i]);
                if (!cls) continue;
                
                const char *mangledName = cls->nonlazyMangledName();
                // 测试
                const char *RoPersonName = "RoPerson";
    
                if (strcmp(mangledName, RoPersonName) == 0) {
                    printf("%s Realize non-lazy classes-RO: 要研究的: - %s\n",__func__,mangledName);
                }
                // 测试
                addClassTableEntry(cls);
    
                if (cls->isSwiftStable()) {
                    if (cls->swiftMetadataInitializer()) {
                        _objc_fatal("Swift class %s with a metadata initializer "
                                    "is not allowed to be non-lazy",
                                    cls->nameForLogging());
                    }
                    // fixme also disallow relocatable classes
                    // We can't disallow all Swift classes because of
                    // classes like Swift.__EmptyArrayStorage
                }
                realizeClassWithoutSwift(cls, nil);
    
            }
        }
    

    Realize non-lazy classes (for +load methods and static instances)这行注释说明只要非懒加载的类实现Load方法就可以断点进入上面的代码。
    为了节约内存,提高速度通过懒加载类实现。
    如果没有实现load方法的是在哪加载的呢,我们往下分析。
    我们在realizeClassWithoutSwift这个函数的开头部分加入以下代码,如下:

       auto ro = (const class_ro_t *)cls->data();
        auto isMeta = ro->flags & RO_META;
        // 测试
        const char *mangledName = cls->nonlazyMangledName();
        const char *RoPersonName = "RoPerson";
        if (strcmp(mangledName, RoPersonName) == 0) {
            printf("%s realizeClassWithoutSwift: 要研究的: - %s\n",__func__,mangledName);
    
        }
        // 测试
    

    (一定要把RoPerson中的load方法关掉)我们运行,断点,并bt打印堆栈,如图:


    13

    realizeClassWithoutSwift是由realizeClassMaybeSwiftMaybeRelock调起的,而它又是lookUpImpOrForward调起的。
    这也说明了只要在类发送消息的时候,类会进行加载

    14

    分类的本质探索

    realizeClassWithoutSwift这个函数有以下一行代码,如下所示:

    // Attach categories
    methodizeClass(cls, previously);
    

    这行代码对我们的方法,协议有什么影响,我们往下分析。
    我们在main函数加RoPerson的分类,如下:

    @interface RoPerson (RO) <NSObject>
    @property (nonatomic, copy) NSString *cate_name;
    @property (nonatomic, assign) int cate_age;
    
    - (void)cate_instanceMethod1;
    - (void)cate_instanceMethod2;
    + (void)cate_classMethod3;
    
    @end
    
    @implementation RoPerson (RO)
    - (void)cate_instanceMethod1{
        NSLog(@"%s",__func__);
    }
    - (void)cate_instanceMethod2{
        NSLog(@"%s",__func__);
    }
    + (void)cate_classMethod3{
        NSLog(@"%s",__func__);
    }
    @end
    

    我们用clang命令把它翻译成C++代码。
    在最后面我们发现以下代码:

    static struct _category_t *L_OBJC_LABEL_CATEGORY_$ [1] __attribute__((used, section ("__DATA, __objc_catlist,regular,no_dead_strip")))= {
        &_OBJC_$_CATEGORY_RoPerson_$_RO,
    };
    

    这行也就是RoPerson的分类,我们看下_category_t是什么类型,搜索后,如下:

    15
    那么分类也是一个结构体,里面有
    name分类的名字
    const struct _method_list_t *instance_methods;
    const struct _method_list_t *class_methods;
    为什么对象方法和类方法都在里面呢?
    因为分类没有元类的缘故

    我们在搜索下** _category_t**关键字,发现以下代码:

    static struct _category_t _OBJC_$_CATEGORY_RoPerson_$_RO __attribute__ ((used, section ("__DATA,__objc_const"))) = 
    {
        "RoPerson",
        0, // &OBJC_CLASS_$_RoPerson,
        (const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_RoPerson_$_RO,
        (const struct _method_list_t *)&_OBJC_$_CATEGORY_CLASS_METHODS_RoPerson_$_RO,
        (const struct _protocol_list_t *)&_OBJC_CATEGORY_PROTOCOLS_$_RoPerson_$_RO,
        (const struct _prop_list_t *)&_OBJC_$_PROP_LIST_RoPerson_$_RO,
    };
    

    为什么这里的name是** RoPerson而不是Ro呢,因为这里只是编译,还没有进入运行时,只是随机赋了个值。
    那么这些分析跟我们的源码是否一致,我们在源码中搜索
    _category_t**找到以下代码:

    struct category_t {
        const char *name;
        classref_t cls;
        WrappedPtr<method_list_t, PtrauthStrip> instanceMethods;
        WrappedPtr<method_list_t, PtrauthStrip> classMethods;
        struct protocol_list_t *protocols;
        struct property_list_t *instanceProperties;
        // Fields below this point are not always present on disk.
        struct property_list_t *_classProperties;
    
        method_list_t *methodsForMeta(bool isMeta) {
            if (isMeta) return classMethods;
            else return instanceMethods;
        }
    
        property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
        
        protocol_list_t *protocolsForMeta(bool isMeta) {
            if (isMeta) return nullptr;
            else return protocols;
        }
    };
    

    发现有些不一样,比如对象方法和类方法。
    那么分类是怎么加载的呢,由于篇幅太长,我们这里先引入一下。

    分类加载的引入

    我们看下methodizeClass这个函数中的objc::unattachedCategories.attachToClass(cls, previously,
    ATTACH_METACLASS);
    这行代码,
    我们看下attachToClass这个函数,代码如下:

      void attachToClass(Class cls, Class previously, int flags)
        {
            runtimeLock.assertLocked();
            ASSERT((flags & ATTACH_CLASS) ||
                   (flags & ATTACH_METACLASS) ||
                   (flags & ATTACH_CLASS_AND_METACLASS));
    
            auto &map = get();
            auto it = map.find(previously);
    
            if (it != map.end()) {
                category_list &list = it->second;
                if (flags & ATTACH_CLASS_AND_METACLASS) {
                    int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
                    attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);
                    attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);
                } else {
                    attachCategories(cls, list.array(), list.count(), flags);
                }
                map.erase(it);
            }
        }
    

    做了一些方法的处理,那么它又是怎么控制的呢,我们继分析,
    我们先看下rwe,auto methodizeClass这个函数由这行代码rwe = rw->ext();为rwe控制,我们看下:

    15
    从上图可以看出extAllocIfNeeded可以条件判断,我们搜下** extAllocIfNeeded,得到如下:
    attachCategories在这个函数中找到了调用,在添加分类的时候rwe就是能够赋上值的。
    addMethods_finish添加方法的时候也会赋值。
    class_addProtocol添加协议的时候也会赋值。
    _class_addProperty添加属性的时候也会赋值。
    objc_duplicateClass重命名的时候也会赋值。
    也就是说
    动态处理时候才会对rwe的处理
    我们重点关注
    attachCategories分类的加载。
    我们搜索
    attachCategories**
    attachToClass有调用。
    load_categories_nolock有调用。
    后面会详细介绍。

    结语

    这篇文章介绍了类的加载大致流程,_objc_init分析,map_images分析,realizeClass的分析,methodizeClass分析,懒加载类与非懒加载类,分类的本质探索,类的加载原理还未介绍完,我们将在类的加载原理(下)再次介绍。

    相关文章

      网友评论

          本文标题:iOS类的加载原理(上)

          本文链接:https://www.haomeiwen.com/subject/glpjpltx.html