美文网首页
TensorBoard 的使用

TensorBoard 的使用

作者: Yigit_dev | 来源:发表于2017-12-23 16:41 被阅读0次

    本篇博客主要介绍下 tensorboard 的使用方法,tensorboard 是 tensorflow 中一个可视化训练过程中数据的工具,它不需要单独安装,tensorflow 安装过程中已经将其装好了,它可以通过tensorflow程序运行过程中产生的日志文件可视化tensorflow程序的运行状态,它和tensorflow程序跑在不同的进程。下面基于官方的例子源码来讲解 mnist_with_summaries.py

    编码阶段

    1.添加关心的tensor或者Variable变量到tensorboard中

    tf.summary.image 添加需要观察的图片信息

      with tf.name_scope('input_reshape'):#使用命名空间,将一些节点信息统一在一起,使计算图看起来整洁
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10) # 参数:name、tensor、max_outputs
        #max_outputs默认是3,我们这里让其多显示几张就写成了10
        #使用命名空间后,image的名字类似:input_reshape/input/xxxxx  
    

    tf.summary.scalar 添加需要观察的变量信息

      # 定义一个对Variable变量(这里有weight和bias)的命名空间公共方法,并计算他们的mean、stddev
      # max、min、histogram等值并收集在Tensorboard中供用户查看
      def variable_summaries(var):
        """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
        with tf.name_scope('summaries'):
          mean = tf.reduce_mean(var)
          tf.summary.scalar('mean', mean) #参数 :name, values
          with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
          tf.summary.scalar('stddev', stddev)
          tf.summary.scalar('max', tf.reduce_max(var)) #名字类似:xxx/summaries/max
          tf.summary.scalar('min', tf.reduce_min(var))
          tf.summary.histogram('histogram', var)
    

    tf.summary.histogram 添加对变量或者tensor取值范围的直方图信息

          with tf.name_scope('Wx_plus_b'):
            preactivate = tf.matmul(input_tensor, weights) + biases
            tf.summary.histogram('pre_activations', preactivate) #参数 :name, values
    

    2.汇总所有操作节点,并通过FileWriter创建保存运行过程中信息的文件

    tf.summary.merge_all 汇总所有节点操作,并定义两个文件记录器FileWriter

      #汇总所有操作,并定义两个文件记录器FileWriter
      merged = tf.summary.merge_all()
      train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) #添加整个计算图
      test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
    

    3.训练或者测试过程中运行汇总的节点merged,会产生运行信息并将这些信息写入上一步中创建的文件当中

    train_writer.add_summary 往文件中写入信息

            #记录训练时运算时间和内存占用情况
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #设置trace_level
            run_metadata = tf.RunMetadata() #定义tensorflow运行元信息
            summary, _ = sess.run([merged, train_step],
                                  feed_dict=feed_dict(True),
                                  options=run_options,
                                  run_metadata=run_metadata)
            train_writer.add_run_metadata(run_metadata, 'step%03d' % i)#添加训练元信息
            train_writer.add_summary(summary, i)
    

    完整的代码如下:

    # coding=UTF-8
    import argparse
    import os
    import sys
    
    import tensorflow as tf
    
    from tensorflow.examples.tutorials.mnist import input_data
    
    FLAGS = None
    
    
    def train():
      # Import data
      mnist = input_data.read_data_sets(FLAGS.data_dir,
                                        fake_data=FLAGS.fake_data)
    
      # 默认的session,可以先构建session后定义操作,如果使用tf.Session()需要在启动session之前构建整个计算图,
      # 然后启动该计算图。它还可以直接在不声明session的条件下直接使用run(),eval()
      sess = tf.InteractiveSession()
    
    
      # Create a multilayer model.
    
      # Input placeholders
      with tf.name_scope('input'): #使用命名空间,将一些节点信息统一在一起,使计算图看起来整洁
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_ = tf.placeholder(tf.int64, [None], name='y-input')
    
      with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10) #使用命名空间后,image的名字类似:input_reshape/input/xxxxx
    
      # We can't initialize these variables to 0 - the network will get stuck.
      #模型参数初始化
      def weight_variable(shape):
        """Create a weight variable with appropriate initialization."""
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
      def bias_variable(shape):
        """Create a bias variable with appropriate initialization."""
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
      # 定义一个对Variable变量(这里有weight和bias)的命名空间公共方法,并计算他们的mean、stddev
      # max、min、histogram等值并收集在Tensorboard中供用户查看
      def variable_summaries(var):
        """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
        with tf.name_scope('summaries'):
          mean = tf.reduce_mean(var)
          tf.summary.scalar('mean', mean)
          with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
          tf.summary.scalar('stddev', stddev)
          tf.summary.scalar('max', tf.reduce_max(var)) #名字类似:xxx/summaries/max
          tf.summary.scalar('min', tf.reduce_min(var))
          tf.summary.histogram('histogram', var)
    
      def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
        """Reusable code for making a simple neural net layer.
        It does a matrix multiply, bias add, and then uses ReLU to nonlinearize.
        It also sets up name scoping so that the resultant graph is easy to read,
        and adds a number of summary ops.
        """
        # 定义一个MLP多层神经网络来训练数据,包括:初始化weight和bias、做一个矩阵相乘再加上一个偏置项,然后经过一个非线性
        #激活函数
        # Adding a name scope ensures logical grouping of the layers in the graph.
        with tf.name_scope(layer_name):
          # This Variable will hold the state of the weights for the layer
          with tf.name_scope('weights'):
            weights = weight_variable([input_dim, output_dim])
            variable_summaries(weights)
          with tf.name_scope('biases'):
            biases = bias_variable([output_dim])
            variable_summaries(biases)
          with tf.name_scope('Wx_plus_b'):
            preactivate = tf.matmul(input_tensor, weights) + biases
            tf.summary.histogram('pre_activations', preactivate)
          activations = act(preactivate, name='activation')
          tf.summary.histogram('activations', activations)
          return activations
    
      hidden1 = nn_layer(x, 784, 500, 'layer1') #使用前面定义的网络
    
      #使用dropout
      with tf.name_scope('dropout'):
        keep_prob = tf.placeholder(tf.float32)
        tf.summary.scalar('dropout_keep_probability', keep_prob)
        dropped = tf.nn.dropout(hidden1, keep_prob)
    
      # Do not apply softmax activation yet, see below.
      # 这里激活函数用的是全等映射,即直接将输入复制给输出
      y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
    
      with tf.name_scope('cross_entropy'):
        # The raw formulation of cross-entropy,
        # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)), reduction_indices=[1]))
        # can be numerically unstable.
        # So here we use tf.losses.sparse_softmax_cross_entropy on the
        # raw logit outputs of the nn_layer above, and then average across
        # the batch.
        with tf.name_scope('total'):
          #计算softmax和交叉熵
          cross_entropy = tf.losses.sparse_softmax_cross_entropy(
              labels=y_, logits=y)
      tf.summary.scalar('cross_entropy', cross_entropy)
    
      #使用Adam优化器对损失进行优化
      with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
            cross_entropy)
    
      #统计正确率
      with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
          correct_prediction = tf.equal(tf.argmax(y, 1), y_)
        with tf.name_scope('accuracy'):
          accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      tf.summary.scalar('accuracy', accuracy)
    
      # Merge all the summaries and write them out to
      # ./logs/(by default)
      #汇总所有操作,并定义两个文件记录器FileWriter
      merged = tf.summary.merge_all()
      train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
      test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
      tf.global_variables_initializer().run()
    
      # Train the model, and also write summaries.
      # Every 10th step, measure test-set accuracy, and write test summaries
      # All other steps, run train_step on training data, & add training summaries
      #定义一个feed_dict函数来确定要训练数据还是测试数据
      def feed_dict(train):
        """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
        if train or FLAGS.fake_data:
          xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
          k = FLAGS.dropout
        else:
          xs, ys = mnist.test.images, mnist.test.labels
          k = 1.0
        return {x: xs, y_: ys, keep_prob: k}
    
      for i in range(FLAGS.max_steps):
        if i % 10 == 0:  # Record summaries and test-set accuracy
          summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
          test_writer.add_summary(summary, i)
          print('Accuracy at step %s: %s' % (i, acc))
        else:  # Record train set summaries, and train
          if i % 100 == 99:  # Record execution stats
            #记录训练时运算时间和内存占用情况
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
            summary, _ = sess.run([merged, train_step],
                                  feed_dict=feed_dict(True),
                                  options=run_options,
                                  run_metadata=run_metadata)
            train_writer.add_run_metadata(run_metadata, 'step%03d' % i)#添加训练元信息
            train_writer.add_summary(summary, i)
            print('Adding run metadata for', i)
          else:  # Record a summary
            summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
            train_writer.add_summary(summary, i)
      train_writer.close() #记得关闭
      test_writer.close()
    
    
    def main(_):
      if tf.gfile.Exists(FLAGS.log_dir):#文件存在就删除,重新训练生成
        tf.gfile.DeleteRecursively(FLAGS.log_dir)
      tf.gfile.MakeDirs(FLAGS.log_dir)
      train()
    
    
    if __name__ == '__main__':
      parser = argparse.ArgumentParser() #命令行参数解析,没有默认值就提示用户输入
      parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
                          default=False,
                          help='If true, uses fake data for unit testing.')
      parser.add_argument('--max_steps', type=int, default=1000,
                          help='Number of steps to run trainer.')
      parser.add_argument('--learning_rate', type=float, default=0.001,
                          help='Initial learning rate')
      parser.add_argument('--dropout', type=float, default=0.9,
                          help='Keep probability for training dropout.')
      parser.add_argument(
          '--data_dir',
          type=str,
          default="./mnist_data",
          help='Directory for storing input data')
      parser.add_argument(
          '--log_dir',
          type=str,
          default="./logs",
          help='Summaries log directory')
      FLAGS, unparsed = parser.parse_known_args()
      tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
    

    TensorBoard 可视化文件生成

    上面代码运行完成后会在train_writer和test_writer指定目录下生成类似"events.out.tfevents.1513910245.N22411D1"这种的文件,然后通过命令行输入命令

    tensorboard --logdir=path/to/log-directory #注意这里只需要指定到生成文件的上一级目录就可以了
    

    会有如下提示:

    F:\>tensorboard --logdir=./log
    TensorBoard 0.4.0rc3 at http://N22411D1:6006 (Press CTRL+C to quit)
    

    最后我们通过将" http://N22411D1:6006"输入谷歌或者火狐浏览器就可以了。

    TensorBoard 可视化文件分析

    请放大查看原图,图中有注释说明。

    SCALARS

    统计一些准确率、损失函数、weight等单个值的变化趋势


    tensorboard_summary_scalars.PNG

    IMAGES

    显示你指定的一些图片信息


    tensorboard_image.PNG

    GRAPHS

    显示你定义的整个计算图,包括计算图里面每个节点的详细信息,比如输入输出的shape是多少,内存占用,计算时间占用,节点名称等等


    tensorflow_graphs.PNG

    DISTRIBUTIONS

    显示你指定的一些模型参数随着迭代次数增加的变化趋势


    tensorboard_distributions.PNG

    HISTOGRAMS

    显示你指定的一些模型参数随着迭代次数增加的变化趋势


    tensorboard_histograms.PNG

    参考:《TensorFlow实战》

    相关文章

      网友评论

          本文标题:TensorBoard 的使用

          本文链接:https://www.haomeiwen.com/subject/gmjtgxtx.html