美文网首页
一步步看懂STL源码(2)--序列式容器vector

一步步看懂STL源码(2)--序列式容器vector

作者: ElephantKing | 来源:发表于2019-10-23 13:53 被阅读0次

STL最简单的容器vector

STL的vector实现了一个可以自动增长,快速随机访问的数组,使用效率不俗,搭载STL算法使用方便,是日常最常用的数据结构之一。擅长在尾部进行插入,删除,随机访问。在容器中间删除或者容器扩容时,需要进行对象迁移。

vector实现的基本思路

连续分配地址空间,分别用start finish end_of_storage三个迭代器指示元素开始 元素结束 地址结束,对容器的其他所有的算法操作都是基于这三个迭代器来进行的。下面将会详细的描述。

vector具体实现

以下是vector中较为简单的函数,单独归拢在一起。

template <class T, class Alloc = alloc>
class vector {
public:
    typedef T value_type;
    typedef value_type* pointer;
    // 可以看出vector的迭代器类型其实是原生指针,是随机访问迭代器
    typedef value_type* iterator;
    typedef value_type& reference;
    typedef size_t size_type;
    typedef ptrdiff_t difference_type;
protected:
    typedef simple_alloc<value_type, Alloc> data_allocator;
    iterator start;        // 存放元素的开始
    iterator finish;      // 存放元素的末尾
    iterator end_of_storage;    // 容器最大容量的末尾
public:
    iterator begin() { return start; }
    iterator end() { return finish; }
    size_type size() const { return size_type(end() - begin()); }
    size_type capacity() const { return size_type(end_of_storage - begin()); }
    void resize(size_type new_size, const T& x = value_type())
    {
        if (new_size < size())
            erase(begin() + new_size, end());
        else
            insert(end(), new_size - size(), x);
    }
    bool empty() const { return begin() == end(); }
    reference front() { return *begin(); }
    reference back() { return *(end() - 1); }
    reference operator[](size_type n) { return *(begin() + n); }
};

下面是vector的构造和析构函数的具体实现

vector() : start(0), finish(0), end_of_storage(0) {}
vector(size_type n, const T& x) { fill_initialize(n, x); }
vector(size_type n) { fill_initialize(n, T()); }
// 析构分为两步
~vector() { destroy(start, finish); deallocate();}
void deallocate()
{
    if (start)
        data_allocator::deallocate(start, end_of_storage - start);
}
void fill_initialize(size_type n, const T& value)
{
    start = allocate_and_fill(n, value);
    finish = start + n;
    end_of_storage = finish;
}
iterator allocate_and_fill(size_type n, const T& value)
{
    // 分配可容纳n个对象的空间
    iterator result = data_allocator::allocate(n);
    // 开始在这片空间上构造n个对象
    uninitialized_fill_n(result, n, value);
    return result;
}

其他重要函数的实现

void push_back(const T& x)
{
    // 上次分配的空间还有余量,不用腾挪
    if (finish != end_of_storage)
    {
        construct(finish, x);
        ++finish;
    }
    else
        insert_aux(end(), x);
}
void insert_aux(iterator position, const T& x)
{
    if (finish != end_of_storage)
    {
        construct(finish, *(finish - 1));
        ++finish;
        T x_copy = x;
        // 从后向前,把[position,finish-2]的元素拷贝到finish-1
        copy_backward(position, finish - 2, finish - 1);
        *position = x_copy;
    }
    else
    {
        const size_type old_size = size();
        // 空间不够,2倍扩容
        const size_type len = old_size != 0 ? 2 * old_size : 1;
        // 开辟新的够大的空间
        iterator new_start = data_allocator::allocate(len);
        iterator new_finish = new_start;
        try {
            // step 1:把原数组[start,position]拷贝过来
            new_finish = uninitialized_copy(start, position,new_start);
            // step 2:把要插入的元素拷贝过来
            construct(new_finish,x);
            // step 3:调整new_finish
            ++new_finish;
            // step 4:把原数组剩余元素拷贝过来
            new_finish = uninitialized_copy(position, finish, new_finish);
        }
        catch(...){}
        // 析构原数组对象,回收原数组空间,设置新的begin,finish
        destroy(begin(), end());
        deallocate();
        start = new_start;
        finish = new_finish;
        end_of_storage = new_start + len;
    }
}
void pop_back()
{
    --finish;
    destroy(finish);
}
iterator erase(iterator first, iterator last)
{
    iterator i = copy(last, finish, first);
    destroy(i, finish);
    finish = finish - (last - first);
    return first;
}
iterator erase(iterator position)
{
    if (position + 1 != end())
    {
        copy(position + 1, finish, position);
    }
    --finish;
    destroy(finish);
    return position;
}
void clear() { erase(begin(), end()); }
void insert(iterator position, size_type n, const T& x)
{
    if (n != 0)
    {
        if (size_type(end_of_storage - finish) >= n) {
            // seq:0 1 2 3 4 5 6 7 8 9 _
            // position=begin+2=2,n=3,x=8
            // elems_after=finish-position=10-2=8
            // old_finish=finish = 10
            T x_copy = x;
            const size_type elems_after = finish - position;
            iterator old_finish = finish;
            if (elems_after > n)
            {
                // finish-n=7 finish = 10
                // seq:0 1 2 3 4 5 6 7 8 9 _
                // finish += 3 ==> finish = 13
                // seq:0 1 2 3 4 2 3 4 5 6 7 8 9 _
                // seq:0 1 8 8 8 2 3 4 5 6 7 8 9 _
                uninitialized_copy(finish - n, finish, finish);
                finish += n;
                copy_backward(position, old_finish-n, old_finish);
                fill(position, position+n, x_copy);
            }
            else
            {
                // seq:0 1 2 3 4 5 6 7 8 9 _
                // position=begin+8,n=3,x=2
                // elems_after=finish-position=2
                // seq:0 1 2 3 4 5 6 7 8 9 2 _
                // finish += n - elems_after ==> finish = 11
                // seq:0 1 2 3 4 5 6 7 8 9 2 8 9 _
                // finish += elems_after ==> finish = 13
                // seq:0 1 2 3 4 5 6 7 2 2 2 8 9 _
                uninitialized_fill_n(finish, n-elems_after,x_copy);
                finish += n - elems_after;
                uninitialized_copy(position, old_finish, finish);
                finish += elems_after;
                fill(position,old_finish,x_copy);
            }
        }
        else {
            const size_type old_size = size();
            const size_type len = old_size + max(old_size, n);
            iterator new_start = data_allocator::allocate(len);
            iterator new_finish = new_start;
            try {
                new_finish = uninitialized_copy(start,position,new_start);
                new_finish = uninitialized_fill(new_finish,n,x);
                new_finish = uninitialized_copy(position,finish,new_finish);
            }
            catch(...){}
            destroy(start,finish);
            deallocate();
            start = new_start;
            finish = new_finish;
            end_of_storage = new_start + len;
        }
    }
}

实例及注意事项

  1. vector操作内部并没有考虑越界的情况,使用请小心
  2. vector的容量是2倍增长的
  3. vector的使用量和总容量不一定相等
  4. 待补充

相关文章

网友评论

      本文标题:一步步看懂STL源码(2)--序列式容器vector

      本文链接:https://www.haomeiwen.com/subject/gmxtvctx.html