美文网首页
图像的加密和解密---OpenCV-Python开发指南(5)

图像的加密和解密---OpenCV-Python开发指南(5)

作者: 极客学编程 | 来源:发表于2021-04-13 21:12 被阅读0次

    按位异或

    要实现图像的加密与解密,我们首先需要掌握数学中的按位异或计算方式。

    异或运算也叫半加运算,其运算法则与不带进位的二进制加法类似。在python中,通过“^”符号进行异或计算。下面,博主专门列出一个表格详解按位异或运算:

    算数1 算数2 结果 python代码
    0 0 0 0^0
    0 1 1 0^1
    1 0 1 1^0
    1 1 0 1^1

    简单的概括按位异或运算的规则是:相同的两个数运算为0,不同两个数运算为1。按位异或不仅仅用于图像的加密与解密,而且可以通过它统计不相同的数。

    什么是图像的加密与解密

    图像的加密定义:通过对原始图像与密钥图像进行按位异或运算。

    图像的解密定义:将加密后的图像与密钥图像在次进行按位异或运算。

    从图像的加密与解密可以看出来,它们都是同一种运算。

    我们现在规定异或的文字符号为xor,根据上述按位异或运算,我们假设:

    xor(a,b)=c

    则可以得到:

    xor(c,b)=a

    亦或者:

    xor(c,a)=b

    综上所述,我们假设a为原始的图像数据,b为密钥,那么通过xor(a,c)计算出来的c就是加密后的密文。简单的概括加密与解密。

    加密过程:将图像a与密钥b进行按位异或运算,完成加密,得到密文c。

    解密过程:将密文c与密钥b进行按位异或运算,完成解密,得到图像a。

    将图像加密

    既然我们完全掌握了图像加密与解密的原理,下面我们通过代码来实现一个图像的加密。同样的,这里我们先获取一个灰度图像。

    import cv2
    import numpy as np
    
    img = cv2.imread("4.jpg", 0)
    r, c = img.shape
    key = np.random.randint(0, 256, size=[r, c], dtype=np.uint8)
    encryption = cv2.bitwise_xor(img, key)
    
    cv2.imshow("111", encryption)
    cv2.waitKey()
    cv2.destroyAllWindows()
    

    运行之后,我们会得到乱码图像:


    图像加密

    将图像解密

    将图像解密通过是通过按位异或运算,这里我们只需要用加密后的图像与key进行按位异或即可,完整代码如下所示:

    import cv2
    import numpy as np
    
    img = cv2.imread("4.jpg", 0)
    r, c = img.shape
    key = np.random.randint(0, 256, size=[r, c], dtype=np.uint8)
    encryption = cv2.bitwise_xor(img, key)
    decryption = cv2.bitwise_xor(encryption, key)
    cv2.imshow("111", encryption)
    cv2.imshow("222", decryption )
    cv2.waitKey()
    cv2.destroyAllWindows()
    

    运行之后,我们即可得到原图与加密图像:


    加密与解密

    相关文章

      网友评论

          本文标题:图像的加密和解密---OpenCV-Python开发指南(5)

          本文链接:https://www.haomeiwen.com/subject/gnfzkltx.html